CYFIP2

Last updated
CYFIP2
Identifiers
Aliases CYFIP2 , PIR121, cytoplasmic FMR1 interacting protein 2, EIEE65, DEE65
External IDs OMIM: 606323 MGI: 1924134 HomoloGene: 7936 GeneCards: CYFIP2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001037332
NM_001037333
NM_001291721
NM_001291722
NM_014376

Contents

NM_001252459
NM_001252460
NM_133769

RefSeq (protein)

NP_001032410
NP_001278650
NP_001278651
NP_055191

NP_001239388
NP_001239389
NP_598530

Location (UCSC) Chr 5: 157.27 – 157.4 Mb Chr 11: 46.08 – 46.2 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Cytoplasmic FMR1-interacting protein 2 is a protein that in humans is encoded by the CYFIP2 gene. [5] [6] Cytoplasmic FMR1 interacting protein is a 1253 amino acid long protein and is highly conserved sharing 99% sequence identity to the mouse protein. [5] [7] It is expressed mainly in brain tissues, white blood cells and the kidney. [8]

Interactions

CYFIP2 has been shown to interact with FMR1. [5] [9] CYFIP2 is a p-53 inducible protein [10] and also interacts with the Fragile=X mental retardation protein. [11]

RNA editing

The pre-mRNA of this protein is subject to RNA editing. [12] The editing site was previously recorded as a single nucleotide polymorphism (rs3207362) in the dbSNP. [12]

Type

A to I RNA editing is catalyzed by a family of adenosine deaminases acting on RNA (ADARs) that specifically recognize adenosines within double-stranded regions of pre-mRNAs and deaminate them to inosine. Inosines are recognised as guanosine by the cells translational machinery. There are three members of the ADAR family ADARs 1-3 with ADAR1 and ADAR2 being the only enzymatically active members. ADAR3 is thought to have a regulatory role in the brain. ADAR1 and ADAR 2 are widely expressed in tissues while ADAR3 is restricted to the brain. The double stranded regions of RNA are formed by base-pairing between residues in the close to region of the editing site with residues usually in a neighboring intron but can be an exonic sequence. The region that base pairs with the editing region is known as an Editing Complementary Sequence (ECS).

Site

An editing site was found in the pre-mRNA of this protein. The substitution occurs within amino acid position 320 in humans and also in mice. A possible double stranded RNA region has not been detected for this pre-mRNA. [12] No double stranded region required by ADARs has predicted. Immunoprecipitation experiments and RNA interference have shown that ADAR 2 is likely to be the main editing enzyme for this site with ADAR 1 having a minor role. [13] [14]

Regulation

Editing seems to be differentially regulated in different tissues. The highest level of editing occurs in the cerebellum with lower frequency of editing detected in human lung, prostrate and uterus tissues. Editing frequency varies from 30-85% depending on tissue. [12] [13] { [14] There is some evidence for a decrease in CYFIP2 editing with increased age. [15]

Conservation

Editing of the pre-mRNA of this gene has been detected in mouse and chicken. [12]

Effects of RNA editing

Structural

Editing results in a codon change resulting in a glutamic acid being translated instead of a lysine. [12]

Functional

Currently unknown but editing may have role in regulation of apoptotic functions of this protein. It is thought that since the protein is p53 inducible that the protein may be pro-apopototic. Also ADAR1 knock out mice show increase in apoptosis which indicates editing may be involved in regulation of the cellular process. [10] [12]

Related Research Articles

<span class="mw-page-title-main">Z-DNA</span> One of many possible double helical structures of DNA

Z-DNA is one of the many possible double helical structures of DNA. It is a left-handed double helical structure in which the helix winds to the left in a zigzag pattern, instead of to the right, like the more common B-DNA form. Z-DNA is thought to be one of three biologically active double-helical structures along with A-DNA and B-DNA.

<span class="mw-page-title-main">FMR1</span> Human protein and coding gene

FMR1 is a human gene that codes for a protein called fragile X messenger ribonucleoprotein, or FMRP. This protein, most commonly found in the brain, is essential for normal cognitive development and female reproductive function. Mutations of this gene can lead to fragile X syndrome, intellectual disability, premature ovarian failure, autism, Parkinson's disease, developmental delays and other cognitive deficits. The FMR1 premutation is associated with a wide spectrum of clinical phenotypes that affect more than two million people worldwide.

<span class="mw-page-title-main">Kv1.1</span>

Potassium voltage-gated channel subfamily A member 1 also known as Kv1.1 is a shaker related voltage-gated potassium channel that in humans is encoded by the KCNA1 gene. Isaacs syndrome is a result of an autoimmune reaction against the Kv1.1 ion channel.

Missense mRNA is a messenger RNA bearing one or more mutated codons that yield polypeptides with an amino acid sequence different from the wild-type or naturally occurring polypeptide. Missense mRNA molecules are created when template DNA strands or the mRNA strands themselves undergo a missense mutation in which a protein coding sequence is mutated and an altered amino acid sequence is coded for.

<span class="mw-page-title-main">GRIA3</span> Protein-coding gene in humans

Glutamate receptor 3 is a protein that in humans is encoded by the GRIA3 gene.

<span class="mw-page-title-main">FLNA</span> Protein-coding gene in humans

Filamin A, alpha (FLNA) is a protein that in humans is encoded by the FLNA gene.

<span class="mw-page-title-main">ADAR</span> Mammalian protein found in Homo sapiens

The double-stranded RNA-specific adenosine deaminase enzyme family are encoded by the ADAR family genes. ADAR stands for adenosine deaminase acting on RNA. This article focuses on the ADAR proteins; This article details the evolutionary history, structure, function, mechanisms and importance of all proteins within this family.

<span class="mw-page-title-main">IGFBP7</span> Protein-coding gene in the species Homo sapiens

Insulin-like growth factor-binding protein 7 is a protein that in humans is encoded by the IGFBP7 gene. The major function of the protein is the regulation of availability of insulin-like growth factors (IGFs) in tissue as well as in modulating IGF binding to its receptors. IGFBP7 binds to IGF with low affinity compared to IGFBPs 1-6. It also stimulates cell adhesion. The protein is implicated in some cancers.

<span class="mw-page-title-main">FXR1</span> Protein-coding gene in the species Homo sapiens

Fragile X mental retardation syndrome-related protein 1 is a protein that in humans is encoded by the FXR1 gene.

<span class="mw-page-title-main">GRIK1</span> Protein-coding gene in the species Homo sapiens

Glutamate receptor, ionotropic, kainate 1, also known as GRIK1, is a protein that in humans is encoded by the GRIK1 gene.

<span class="mw-page-title-main">FXR2</span> Protein-coding gene in the species Homo sapiens

Fragile X mental retardation syndrome-related protein 2 is a protein that in humans is encoded by the FXR2 gene.

<span class="mw-page-title-main">GABRA3</span> Protein-coding gene in humans

Gamma-aminobutyric acid receptor subunit alpha-3 is a protein that in humans is encoded by the GABRA3 gene.

<span class="mw-page-title-main">CYFIP1</span> Protein-coding gene in the species Homo sapiens

Cytoplasmic FMR1-interacting protein 1 is a protein that in humans is encoded by the CYFIP1 gene.

<span class="mw-page-title-main">NUFIP2</span> Protein-coding gene in the species Homo sapiens

Nuclear fragile X mental retardation-interacting protein 2 is a protein that in humans is encoded by the NUFIP2 gene.

<span class="mw-page-title-main">BLCAP</span> Protein-coding gene in the species Homo sapiens

Bladder cancer-associated protein is a protein that in humans is encoded by the BLCAP gene.

<span class="mw-page-title-main">NUFIP1</span> Protein-coding gene in the species Homo sapiens

Nuclear fragile X mental retardation-interacting protein 1 is a protein that in humans is encoded by the NUFIP1 gene.

<span class="mw-page-title-main">ARL6IP4</span> Protein-coding gene in humans

ADP-ribosylation-like factor 6 interacting protein 4 (ARL6IP4), also called SRp25 is the product of the ARL6IP4 gene located on chromosome 12q24. 31. Its function is unknown.

<span class="mw-page-title-main">C1QL1</span> Protein-coding gene in the species Homo sapiens

The complement component 1, q subcomponent-like 1 is encoded by a gene located at chromosome 17q21.31. It is a secreted protein and is 258 amino acids in length. The protein is widely expressed but its expression is highest in the brain and may also be involved in regulation of motor control. The pre-mRNA of this protein is subject to RNA editing.

<span class="mw-page-title-main">Adenosine deaminase z-alpha domain</span>

In molecular biology, the protein domain Adenosine deaminase z-alpha domain refers to an evolutionary conserved protein domain. This family consists of the N-terminus and thus the z-alpha domain of double-stranded RNA-specific adenosine deaminase (ADAR), an RNA-editing enzyme. The z-alpha domain is a Z-DNA binding domain, and binding of this region to B-DNA has been shown to be disfavoured by steric hindrance.

<span class="mw-page-title-main">LEAPER gene editing</span> Gene editing method

LEAPER is a genetic engineering technique in molecular biology by which RNA can be edited. The technique relies on engineered strands of RNA to recruit native ADAR enzymes to swap out different compounds in RNA. Developed by researchers at Peking University in 2019, the technique, some have claimed, is more efficient than the CRISPR gene editing technique. Initial studies have claimed that editing efficiencies of up to 80%.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000055163 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020340 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 Schenck A, Bardoni B, Moro A, Bagni C, Mandel JL (Jul 2001). "A highly conserved protein family interacting with the fragile X genetic condition protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P". Proc Natl Acad Sci U S A. 98 (15): 8844–9. Bibcode:2001PNAS...98.8844S. doi: 10.1073/pnas.151231598 . PMC   37523 . PMID   11438699.
  6. "Entrez Gene: CYFIP2 cytoplasmic FMR1 interacting protein 2".
  7. "GRIA4 Gene - GeneCards | GRIA4 Protein | GRIA4 Antibody".
  8. Su AI, Wiltshire T, Batalov S, et al. (April 2004). "A gene atlas of the mouse and human protein-encoding transcriptomes". Proc. Natl. Acad. Sci. U.S.A. 101 (16): 6062–7. Bibcode:2004PNAS..101.6062S. doi: 10.1073/pnas.0400782101 . PMC   395923 . PMID   15075390.
  9. Bardoni B, Castets M, Huot ME, Schenck A, Adinolfi S, Corbin F, Pastore A, Khandjian EW, Mandel JL (July 2003). "82-FIP, a novel FMRP (fragile X mental retardation protein) interacting protein, shows a cell cycle-dependent intracellular localization". Hum. Mol. Genet. 12 (14): 1689–98. doi: 10.1093/hmg/ddg181 . PMID   12837692.
  10. 1 2 Saller E, Tom E, Brunori M, et al. (August 1999). "Increased apoptosis induction by 121F mutant p53". EMBO J. 18 (16): 4424–37. doi:10.1093/emboj/18.16.4424. PMC   1171517 . PMID   10449408.
  11. Schenck, A., Bardoni, B., Moro, A., Bagni, C., Mandel, J.-L. (2001) Proceedings of the National Academy of Sciences of the United States of America, 98, 8844-8849.
  12. 1 2 3 4 5 6 7 Levanon EY, Hallegger M, Kinar Y, Shemesh R, Djinovic-Carugo K, Rechavi G, Jantsch MF, Eisenberg E (2005). "Evolutionarily conserved human targets of adenosine to inosine RNA editing". Nucleic Acids Res. 33 (4): 1162–8. doi:10.1093/nar/gki239. PMC   549564 . PMID   15731336.
  13. 1 2 Riedmann EM, Schopoff S, Hartner JC, Jantsch MF (June 2008). "Specificity of ADAR-mediated RNA editing in newly identified targets". RNA. 14 (6): 1110–8. doi:10.1261/rna.923308. PMC   2390793 . PMID   18430892.
  14. 1 2 Nishimoto Y, Yamashita T, Hideyama T, Tsuji S, Suzuki N, Kwak S (June 2008). "Determination of editors at the novel A-to-I editing positions". Neurosci. Res. 61 (2): 201–6. doi:10.1016/j.neures.2008.02.009. PMID   18407364. S2CID   26923552.
  15. Nicholas A, de Magalhaes JP, Kraytsberg Y, Richfield EK, Levanon EY, Khrapko K (June 2010). "Age-related gene-specific changes of A-to-I mRNA editing in the human brain". Mech. Ageing Dev. 131 (6): 445–7. doi:10.1016/j.mad.2010.06.001. PMC   2915444 . PMID   20538013.

Further reading