Company type | Public |
---|---|
Nasdaq: CMBM Russell 2000 Index component | |
Industry | Telecommunications |
Predecessor | Motorola (Canopy) [1] |
Founded | 2011 |
Headquarters | , United States |
Area served | Worldwide |
Key people | Morgan Kurk (president and CEO) [2] |
Revenue | US$335.9 million (2022) [3] [4] |
Number of employees | 700 [5] |
Subsidiaries | Xirrus Wi-Fi |
Website | cambiumnetworks |
Cambium Networks Corporation is a wireless infrastructure provider that offers fixed wireless and Wi-Fi to broadband service providers and enterprises to provide Internet access. An American telecommunications infrastructure company, it provides wireless technology, including Enterprise WiFi, switching solutions, Internet of Things, and fixed wireless broadband and Wi-Fi for enterprises. [6] [7] [8] Publicly traded on the NASDAQ stock exchange, it spun out of Motorola in October 2011. [9] [10] [11]
Cambium Networks manufactures point-to-point backhaul, point-to-multipoint communication wide area network (WAN), Wi-Fi indoor and outdoor access, and cloud-based network management systems. [12] In 2020, the company collaborated with Facebook to add mesh networking technology Terragraph that allows high-speed internet connections where laying fiber optic cable is not viable. [13] As of 2021 the company has shipped 10 million radios. [14]
Products are available in point-to-point and point-to-multipoint configurations. Its cnWave fixed wireless solution provides multi-gigabit throughputs. [14] It includes both the original Motorola-designed products using the Canopy protocol and the PtP backhauls that were rebranded from Orthogon Systems, which Motorola acquired in 2006. Cambium Networks’ solutions are used by broadband service providers and managed service providers to connect business and residential locations in dense urban, suburban, rural and remote locations, including education and healthcare. [15] Campgrounds, RV parks and holiday parks have deployed Cambium Networks' fixed wireless and Wi-Fi for high-speed connectivity. [16]
Cambium Networks also manufactures Wireless LAN (WLAN) Wi-Fi access points including Wi-Fi 6E and intelligent switches along with cloud-management systems. [17] In 2022, Spectralink added interoperability with Cambium Networks access points and Wi-Fi phones and handsets as part of its enterprise wireless certification program. [18]
Cambium Networks was created when Motorola Solutions sold the Canopy and Orthogon businesses in 2011. Cambium evolved the platform and expanded it to three product lines: Point to Point (PTP) (formerly Orthogon), Point to Multipoint (PMP) (formerly Canopy) and ePMP. [19] In July 2019, Cambium acquired Xirrus from Riverbed Technology. [20] In June 2019, the company listed on the NASDAQ Stock Exchange in an initial public offering that raised $70 million. [21] WISPA network operator members voted Cambium Networks the “Manufacturer of the Year” from 2017-2020. [14]
The technology competes with WiMAX, LTE and other long range mobile products, but not effectively with wired Internet, which is capable of much faster speeds and does not have wireless relay round-trip delay. Competent Canopy implementations such as the Broadband for Rural Nova Scotia initiative however have demonstrated VoIP, gaming and other low-latency applications work acceptably over this system, and in areas of challenging weather including high wind conditions (which cause antennas to move and affect connections).
A typical Canopy setup consists of a cluster of up to six co-located standard access points (AP), each with a 60 degree horizontal beamwidth antenna, to achieve 360 degree coverage. The most commonly used APs are available in 120, 180, or 360 degree models for site-based coverage, thus decreasing the number of APs needed on a tower. Also included would be one or more backhauls or otherwise out-of-band links (to carry data to/from other network occasions) and a Cluster Management Module (CMM) to provide power and synchronization to each Canopy AP or Backhaul Module (BM).
Customers of the system receive service through subscriber modules (SM) aimed towards the AP. The SMs should be mounted on the highest point of a building to get a reliable connection; otherwise, Fresnel zone obstruction will weaken the signal. Under ideal operating conditions, the system can communicate over distances of 3.5 to 15 miles (5.6 to 24.1 km) depending on the frequency using equipment with integrated antennas. Network operators can opt to install reflector dishes or Stinger antennas or to use Canopy models that accept external antennas at one or both ends of the link to increase coverage distance.
Most Canopy equipment receives its power using Power over Ethernet, however, none of its standards comply with IEEE 802.3af. A customer can query the status of their SM by viewing URL 169.254.1.1/main.cgi with a web browser (unless the network operator uses a different IP address or has put the subscriber in a VLAN.
In general, the 900 MHz version is more effective for use in outlying areas because of its ability to penetrate trees. [22] However, it requires careful installation because of the easy propagation of interference on that band. Other frequencies currently available are 2.4 GHz, 5.2 GHz, 5.4 GHz, and 5.7 GHz.
While Cambium offers products that support the Wi-Fi protocols (mostly the cnPilot range and the products from their Xirrus acquisition), most of their outdoor, long-range products function exclusively with the proprietary TDMA Canopy or Cambium protocols on custom FPGA code. These are heavily optimized for GPS synchronization, frequency re-use, low latency and long distances / high interference survival. [23]
The versions of this protocol include:
These products are fixed wireless technology. Canopy protocol products have many advantages over Wi-Fi and other wireless local area network protocols:
Their main disadvantages are:
Wireless broadband is a telecommunications technology that provides high-speed wireless Internet access or computer networking access over a wide area. The term encompasses both fixed and mobile broadband.
IEEE 802.11 is part of the IEEE 802 set of local area network (LAN) technical standards, and specifies the set of medium access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) computer communication. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand and are the world's most widely used wireless computer networking standards. IEEE 802.11 is used in most home and office networks to allow laptops, printers, smartphones, and other devices to communicate with each other and access the Internet without connecting wires. IEEE 802.11 is also a basis for vehicle-based communication networks with IEEE 802.11p.
A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks, and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.
Wi-Fi is a family of wireless network protocols based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio waves. These are the most widely used computer networks, used globally in home and small office networks to link devices and to provide Internet access with wireless routers and wireless access points in public places such as coffee shops, hotels, libraries, and airports.
Wireless local loop (WLL) is the use of a wireless communications link as the "last mile / first mile" connection for delivering plain old telephone service (POTS) or Internet access to telecommunications customers. Various types of WLL systems and technologies exist.
In telecommunications, point-to-multipoint communication is communication which is accomplished via a distinct type of one-to-many connection, providing multiple paths from a single location to multiple locations.
A wireless Internet service provider (WISP) is an Internet service provider with a network based on wireless networking. Technology may include commonplace Wi-Fi wireless mesh networking, or proprietary equipment designed to operate over open 900 MHz, 2.4 GHz, 4.9, 5, 24, and 60 GHz bands or licensed frequencies in the UHF band, LMDS, and other bands from 6 GHz to 80 GHz.
IEEE 802.20 or Mobile Broadband Wireless Access (MBWA) was a specification by the standard association of the Institute of Electrical and Electronics Engineers (IEEE) for mobile broadband networks. The main standard was published in 2008. MBWA is no longer being actively developed.
Worldwide Interoperability for Microwave Access (WiMAX) is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide physical layer (PHY) and media access control (MAC) options.
Local multipoint distribution service (LMDS) is a broadband wireless access technology originally designed for digital television transmission (DTV). It was conceived as a fixed wireless, point-to-multipoint technology for utilization in the last mile. LMDS commonly operates on microwave frequencies across the 26 GHz and 29 GHz bands. In the United States, frequencies from 31.0 through 31.3 GHz are also considered LMDS frequencies.
A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It can also be a form of wireless ad hoc network.
HomeRF was a wireless networking specification for home devices. It was developed in 1998 by the Home Radio Frequency Working Group, a consortium of mobile wireless companies that included Proxim Wireless, Intel, Siemens AG, Motorola, Philips and more than 100 other companies.
Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.
IEEE 802.11n-2009, or 802.11n, is a wireless-networking standard that uses multiple antennas to increase data rates. The Wi-Fi Alliance has also retroactively labelled the technology for the standard as Wi-Fi 4. It standardized support for multiple-input multiple-output (MIMO), frame aggregation, and security improvements, among other features, and can be used in the 2.4 GHz or 5 GHz frequency bands.
Long-range Wi-Fi is used for low-cost, unregulated point-to-point computer network connections, as an alternative to other fixed wireless, cellular networks or satellite Internet access.
IEEE 802.11b-1999 or 802.11b is an amendment to the IEEE 802.11 wireless networking specification that extends throughout up to 11 Mbit/s using the same 2.4 GHz band. A related amendment was incorporated into the IEEE 802.11-2007 standard.
IEEE 802.11ac-2013 or 802.11ac is a wireless networking standard in the IEEE 802.11 set of protocols, providing high-throughput wireless local area networks (WLANs) on the 5 GHz band. The standard has been retroactively labelled as Wi-Fi 5 by Wi-Fi Alliance.
Multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is the dominant air interface for 4G and 5G broadband wireless communications. It combines multiple-input, multiple-output (MIMO) technology, which multiplies capacity by transmitting different signals over multiple antennas, and orthogonal frequency-division multiplexing (OFDM), which divides a radio channel into a large number of closely spaced subchannels to provide more reliable communications at high speeds. Research conducted during the mid-1990s showed that while MIMO can be used with other popular air interfaces such as time-division multiple access (TDMA) and code-division multiple access (CDMA), the combination of MIMO and OFDM is most practical at higher data rates.
Citizens Broadband Radio Service (CBRS) is a 150 MHz wide broadcast band of the 3.5 GHz band in the United States. In 2017, the US Federal Communications Commission (FCC) completed a process which began in 2012 to establish rules for commercial use of this band, while reserving parts of the band for the US Federal Government to limit interference with US Navy radar systems and aircraft communications.