Charles Weitz

Last updated
Charles J. Weitz
Education Harvard University
(BA)
Stanford University School of Medicine
(MD, PhD)
Johns Hopkins School of Medicine
(Post-Doc)
Known for Circadian rhythms
Scientific career
Fields Chronobiology
Neurobiology
Molecular Biology
Institutions Harvard Medical School

Charles J. Weitz is a chronobiologist and neurobiologist whose work primarily focuses on studying the molecular biology and genetics of circadian clocks.

Contents

At Harvard University, the Weitz lab consolidated understanding towards the transcriptional architecture of the circadian clock in Drosophila and mice models. He determined the role of the CLOCK protein, which serves to activate transcription of circadian clock genes. [1] The Weitz lab is also accredited for discovering direct transcription termination by the PER complex, which regulates the expression of genes involved in producing the circadian rhythm.

Currently, Weitz's work focuses on using cryo-electron microscopy to study endogenous circadian protein complexes. [2]

Education and academic career

Education

Charles J. Weitz earned his undergraduate degree in Philosophy from Harvard University in 1978. [3]

He received his medical degree from the Stanford University School of Medicine in 1983. After medical school, he completed his internship in surgery/neurosurgery in 1984 at Stanford University School of Medicine. After pursuing medicine, Weitz decided to focus more on research and obtained a Ph.D. in Neuroscience from Stanford University School of Medicine in 1988. He completed his postdoctoral research under the guidance of Dr. Jeremy Nathans from 1988 to 1993 in Molecular Biology and Genetics at Johns Hopkins School of Medicine where his work focused on photoreception, investigating the genetic and molecular basis for human tritanopia. [4] [5]

Academic career

Weitz went into teaching and currently holds the position of Robert Henry Pfeiffer Professor of Neurobiology, where he teaches graduate-level courses, including the Molecular Biology of Mammalian Circadian Clocks. [6] [7]

Scientific career

Role of CLOCK in feedback regulation

In 1998, Weitz was one of many who helped contribute to the discovery of the role of CLOCK in feedback regulation occurring in the Drosophila model. The genes period (per) and timeless (tim) are two important genes involved in the biological clock of Drosophila. The mRNA expression of both genes occurs in circadian rhythms with approximately 24 hour periods. [1]

Weitz and colleagues first identified dCLOCK, the Drosophila homolog of the mouse CLOCK protein. After this step, they were able to determine the protein product of dCLOCK could activate per and tim transcription. Through an E-box located on the promoters of per and tim, the proteins dCLOCK and BMAL1 are able to induce the expression of per and tim. Eventually, the protein products PERIOD and TIMELESS accumulate inside the nucleus. It is there where they inhibit the transcription activity of CLOCK at their promoters, thus forming a negative feedback loop. [1]

Weitz also was among some of the scientists who helped to discover the role of the CLOCK protein in the mammalian circadian mechanism. Previously, the specific mechanism of how CLOCK controls and influences circadian rhythms was unknown. The research of circadian mechanisms in mammals indicated that CLOCK-BMAL1 heterodimers serve to activate the transcription of circadian clock genes such as mper1. Specifically, the heterodimers bind to E-box elements to activate transcription. A mutant CLOCK was still able to form heterodimers with BMAL1 and able to bind DNA. However, the mutation prevented activation of transcription, which indicates that CLOCK is important for the transcriptional activation of genes such as per which play a role in circadian rhythms. [8]

Role of CRY1 and CRY2 in circadian regulation

In Drosophila, CRY functions as a circadian photoreceptor by binding to TIM and inhibiting the PER-TIM negative feedback loop in response to light. However, genetic evidence has suggested that CRY may have a different role in mammals. Weitz, Griffin Jr., and Staknis investigated this hypothesis in 1999 and discovered that the two CRY homologs, CRY1 and CRY2, negatively regulate Per1 transcription by inhibiting the CLOCK-BMAL1 complex, independent of light. The regulation of Per1 is crucial for maintaining the rhythms of various physiological processes in organisms. This finding distinguishes the role of mammalian CRYs from Drosophila CRYs, which suggests that Drosophila CRYs serve as ancestral photoreceptors that act as light-dependent regulators of the circadian feedback loop, while mammalian CRYs have retained their role within the circadian feedback loop but have lost their direct photoreceptor function. [9]

The results of Weitz and his colleagues have allowed for further investigations into the molecular mechanisms of circadian clocks. In a 2001 study by various researchers, altered behavioral rhythms and clock gene expression were observed in mice whose Period1 (Per1) gene was inactivated. This results of Weitz’s study allowed them to conclude Per1 plays an important role in peripheral and output pathways of the circadian clock. [10] Another example is a 2000 study conducted by researchers at Medical College of Wisconsin. Using the conclusions made by Weitz’s 1999 paper, the researchers were able to use the information that changes in the level of Period2 are expected to alter levels of other clock genes, affecting the clock’s phase. [11]

Discovery of feedback regulation by the PERIOD complex

Circadian rhythms are regulated by a transcription-translation feedback loop (TTFL). In mammals, this process is crucially associated with the PER complex, formed by the combined complex of three PER and two CRY proteins. As the PER complex inhibits the expression of PER and CRY, the accumulation and degradation of the PER complex creates a negative feedback loop that helps to regulate the expression of genes involved in producing the circadian rhythm. [12]

In 2012, Weitz, with his two lab members Kiran Padmanabhan and Maria S. Robles, investigated the feedback regulation by the PER complex. In the mouse model, they found that the PER complex contains a helicase that promotes transcriptional termination, SETX. [13] During the negative feedback loop, RNA polymerase II accumulates near termination sites on PER and CRY genes, promoting transcription of the genes. [13] As the PER complex is produced, the SETX interacts with the accumulated RNA polymerase II, blocking its release and inhibiting further transcription of the PER and CRY genes. [13] This discovery solidified insight into how PER proteins may repress clock-controlled target genes directly, contributing to future studies of the circadian clock's transcriptional architecture. [12]

Application of cryo-electron microscopy towards understanding the mammalian circadian clock

Cryo-electron microscopy (cryo-EM) is a cutting-edge technique that determines the three-dimensional structure of large molecules at high resolution. [14] As it reveals the structures of biomolecules previously difficult to study using traditional methods (see X-ray crystallography and nuclear magnetic resonance spectroscopy), cryo-EM is useful for gaining new insights into the structures and functions of biomolecules. [14]

In 2017, Weitz, alongside Rajindra Aryal, Pieter Bas Kwak, Alfred Tamayo and Michael Gebert, applied this technique to enrich the understanding of the mammalian circadian clock. They deciphered macromolecular compositions of the circadian feedback loop, as well as internal structural properties of the clock’s function. [2] It was discovered that the PER complexes exhibited quasi-spherical structures, featuring globular domains that were connected by flexible linkers. [2] In the cytoplasm, GAPVD1, a cytoplasmic trafficking factor, regulates a system of complexes involved in producing a circadian rhythm. [2]

Circadian gene expression in the heart and liver

In 2002, Weitz contributed to the research on how circadian gene regulation works in peripheral tissues. The results of the study showed that the circadian phases of the genes in the liver and heart were different from each other. However, the circadian genes in these two tissues affect overlapping biological processes, as indicated by a comparative analysis done by the researchers. [15]

In a 2008 paper, Katja A. Lamia, Kai-Florian Storch along with Charles Weitz discovered that a liver specific mutation to the Bmal1 gene results in low glucose levels during the fasting period of the mices’ feeding cycle. It was also discovered that there was excess glucose usage and loss of rhythmicity in the glucose regulation genes of the liver. This led to the understanding that the liver clock is important for glucose circulation and for rhythmicity of glucose export and ingestion. [16]

Selected papers

Positions and honors

Related Research Articles

<span class="mw-page-title-main">Suprachiasmatic nucleus</span> Part of the brains hypothalamus

The suprachiasmatic nucleus or nuclei (SCN) is a small region of the brain in the hypothalamus, situated directly above the optic chiasm. The SCN is the principal circadian pacemaker in mammals, responsible for generating circadian rhythms. Reception of light inputs from photosensitive retinal ganglion cells allow the SCN to coordinate the subordinate cellular clocks of the body and entrain to the environment. The neuronal and hormonal activities it generates regulate many different body functions in an approximately 24-hour cycle.

A circadian clock, or circadian oscillator, is a biochemical oscillator that cycles with a stable phase and is synchronized with solar time.

<span class="mw-page-title-main">Cryptochrome</span> Class of photoreceptors in plants and animals

Cryptochromes are a class of flavoproteins found in plants and animals that are sensitive to blue light. They are involved in the circadian rhythms and the sensing of magnetic fields in a number of species. The name cryptochrome was proposed as a portmanteau combining the chromatic nature of the photoreceptor, and the cryptogamic organisms on which many blue-light studies were carried out.

The Casein kinase 1 family of protein kinases are serine/threonine-selective enzymes that function as regulators of signal transduction pathways in most eukaryotic cell types. CK1 isoforms are involved in Wnt signaling, circadian rhythms, nucleo-cytoplasmic shuttling of transcription factors, DNA repair, and DNA transcription.

<span class="mw-page-title-main">CLOCK</span> Protein-coding gene in the species Homo sapiens

CLOCK is a gene encoding a basic helix-loop-helix-PAS transcription factor that is known to affect both the persistence and period of circadian rhythms.

Timeless (tim) is a gene in multiple species but is most notable for its role in Drosophila for encoding TIM, an essential protein that regulates circadian rhythm. Timeless mRNA and protein oscillate rhythmically with time as part of a transcription-translation negative feedback loop involving the period (per) gene and its protein.

Period (per) is a gene located on the X chromosome of Drosophila melanogaster. Oscillations in levels of both per transcript and its corresponding protein PER have a period of approximately 24 hours and together play a central role in the molecular mechanism of the Drosophila biological clock driving circadian rhythms in eclosion and locomotor activity. Mutations in the per gene can shorten (perS), lengthen (perL), and even abolish (per0) the period of the circadian rhythm.

<span class="mw-page-title-main">NPAS2</span> Protein-coding gene in the species Homo sapiens

Neuronal PAS domain protein 2 (NPAS2) also known as member of PAS protein 4 (MOP4) is a transcription factor protein that in humans is encoded by the NPAS2 gene. NPAS2 is paralogous to CLOCK, and both are key proteins involved in the maintenance of circadian rhythms in mammals. In the brain, NPAS2 functions as a generator and maintainer of mammalian circadian rhythms. More specifically, NPAS2 is an activator of transcription and translation of core clock and clock-controlled genes through its role in a negative feedback loop in the suprachiasmatic nucleus (SCN), the brain region responsible for the control of circadian rhythms.

<span class="mw-page-title-main">PER2</span> Protein-coding gene in the species Homo sapiens

PER2 is a protein in mammals encoded by the PER2 gene. PER2 is noted for its major role in circadian rhythms.

<span class="mw-page-title-main">FBXL3</span> Protein-coding gene in the species Homo sapiens

FBXL3 is a gene in humans and mice that encodes the F-box/LRR-repeat protein 3 (FBXL3). FBXL3 is a member of the F-box protein family, which constitutes one of the four subunits in the SCF ubiquitin ligase complex.

<span class="mw-page-title-main">ARNTL2</span> Protein-coding gene in humans

Aryl hydrocarbon receptor nuclear translocator-like 2, also known as Arntl2, Mop9, Bmal2, or Clif, is a gene.

An Error has occurred retrieving Wikidata item for infobox Period circadian protein homolog 1 is a protein in humans that is encoded by the PER1 gene.

<span class="mw-page-title-main">Basic helix-loop-helix ARNT-like protein 1</span> Protein-coding gene in the species Homo sapiens

Basic helix-loop-helix ARNT-like protein 1 or aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL), or brain and muscle ARNT-like 1 is a protein that in humans is encoded by the BMAL1 gene on chromosome 11, region p15.3. It's also known as MOP3, and, less commonly, bHLHe5, BMAL, BMAL1C, JAP3, PASD3, and TIC.

In molecular biology, an oscillating gene is a gene that is expressed in a rhythmic pattern or in periodic cycles. Oscillating genes are usually circadian and can be identified by periodic changes in the state of an organism. Circadian rhythms, controlled by oscillating genes, have a period of approximately 24 hours. For example, plant leaves opening and closing at different times of the day or the sleep-wake schedule of animals can all include circadian rhythms. Other periods are also possible, such as 29.5 days resulting from circalunar rhythms or 12.4 hours resulting from circatidal rhythms. Oscillating genes include both core clock component genes and output genes. A core clock component gene is a gene necessary for to the pacemaker. However, an output oscillating gene, such as the AVP gene, is rhythmic but not necessary to the pacemaker.

Steven M. Reppert is an American neuroscientist known for his contributions to the fields of chronobiology and neuroethology. His research has focused primarily on the physiological, cellular, and molecular basis of circadian rhythms in mammals and more recently on the navigational mechanisms of migratory monarch butterflies. He was the Higgins Family Professor of Neuroscience at the University of Massachusetts Medical School from 2001 to 2017, and from 2001 to 2013 was the founding chair of the Department of Neurobiology. Reppert stepped down as chair in 2014. He is currently distinguished professor emeritus of neurobiology.

<i>Cycle</i> (gene)

Cycle (cyc) is a gene in Drosophila melanogaster that encodes the CYCLE protein (CYC). The Cycle gene (cyc) is expressed in a variety of cell types in a circadian manner. It is involved in controlling both the sleep-wake cycle and circadian regulation of gene expression by promoting transcription in a negative feedback mechanism. The cyc gene is located on the left arm of chromosome 3 and codes for a transcription factor containing a basic helix-loop-helix (bHLH) domain and a PAS domain. The 2.17 kb cyc gene is divided into 5 coding exons totaling 1,625 base pairs which code for 413 aminos acid residues. Currently 19 alleles are known for cyc. Orthologs performing the same function in other species include ARNTL and ARNTL2.

<span class="mw-page-title-main">Michael Rosbash</span> American geneticist and chronobiologist (born 1944)

Michael Morris Rosbash is an American geneticist and chronobiologist. Rosbash is a professor and researcher at Brandeis University and investigator at the Howard Hughes Medical Institute. Rosbash's research group cloned the Drosophila period gene in 1984 and proposed the Transcription Translation Negative Feedback Loop for circadian clocks in 1990. In 1998, they discovered the cycle gene, clock gene, and cryptochrome photoreceptor in Drosophila through the use of forward genetics, by first identifying the phenotype of a mutant and then determining the genetics behind the mutation. Rosbash was elected to the National Academy of Sciences in 2003. Along with Michael W. Young and Jeffrey C. Hall, he was awarded the 2017 Nobel Prize in Physiology or Medicine "for their discoveries of molecular mechanisms controlling the circadian rhythm".

Hitoshi Okamura is a Japanese scientist who specializes in chronobiology. He is currently a professor of Systems Biology at Kyoto University Graduate School of Pharmaceutical Sciences and the Research Director of the Japan Science Technology Institute, CREST. Okamura's research group cloned mammalian Period genes, visualized clock oscillation at the single cell level in the central clock of the SCN, and proposed a time-signal neuronal pathway to the adrenal gland. He received a Medal of Honor with Purple Ribbon in 2007 for his research and was awarded Aschoff's Ruler for his work on circadian rhythms in rodents. His lab recently revealed the effects of m6A mRNA methylation on the circadian clock, neuronal communications in jet lag, and the role of dysregulated clocks in salt-induced hypertension.

Paul Hardin is an American scientist in the field of chronobiology and a pioneering researcher in the understanding of circadian clocks in flies and mammals. Hardin currently serves as a distinguished professor in the biology department at Texas A&M University. He is best known for his discovery of circadian oscillations in the mRNA of the clock gene Period (per), the importance of the E-Box in per activation, the interlocked feedback loops that control rhythms in activator gene transcription, and the circadian regulation of olfaction in Drosophila melanogaster. Born in a suburb of Chicago, Matteson, Illinois, Hardin currently resides in College Station, Texas, with his wife and three children.

Transcription-translation feedback loop (TTFL) is a cellular model for explaining circadian rhythms in behavior and physiology. Widely conserved across species, the TTFL is auto-regulatory, in which transcription of clock genes is regulated by their own protein products.

References

  1. 1 2 3 Darlington, Thomas K.; Wager-Smith, Karen; Ceriani, M. Fernanda; Staknis, David; Gekakis, Nicholas; Steeves, Thomas D. L.; Weitz, Charles J.; Takahashi, Joseph S.; Kay, Steve A. (June 1998). "Closing the Circadian Loop: CLOCK-Induced Transcription of Its Own Inhibitors per and tim". Science. 280 (5369): 1599–1603. Bibcode:1998Sci...280.1599D. doi:10.1126/science.280.5369.1599. ISSN   0036-8075. PMID   9616122.
  2. 1 2 3 4 Aryal, Rajindra P.; Kwak, Pieter Bas; Tamayo, Alfred G.; Gebert, Michael; Chiu, Po-Lin; Walz, Thomas; Weitz, Charles J. (September 2017). "Macromolecular Assemblies of the Mammalian Circadian Clock". Molecular Cell. 67 (5): 770–782.e6. doi:10.1016/j.molcel.2017.07.017. ISSN   1097-2765. PMC   5679067 . PMID   28886335.
  3. Weitz, Charles (2023). "Charles Weitz Linkedin". Linkedin. Retrieved 11 April 2023.
  4. Weitz, C. J.; Went, L. N.; Nathans, J. (August 1992). "Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment". American Journal of Human Genetics. 51 (2): 444–446. ISSN   0002-9297. PMC   1682686 . PMID   1386496.
  5. "FlyTree - Jeremy Nathans". academictree.org. Retrieved 2023-04-26.
  6. 1 2 "Charles Weitz". neuro.hms.harvard.edu. Retrieved 2023-04-11.
  7. "Courses". registrar.fas.harvard.edu. Retrieved 2023-04-26.
  8. Gekakis, Nicholas; Staknis, David; Nguyen, Hubert B.; Davis, Fred C.; Wilsbacher, Lisa D.; King, David P.; Takahashi, Joseph S.; Weitz, Charles J. (June 1998). "Role of the CLOCK Protein in the Mammalian Circadian Mechanism". Science. 280 (5369): 1564–1569. Bibcode:1998Sci...280.1564G. doi:10.1126/science.280.5369.1564. ISSN   0036-8075. PMID   9616112.
  9. Griffin, Edmund A.; Staknis, David; Weitz, Charles J. (1999-10-22). "Light-Independent Role of CRY1 and CRY2 in the Mammalian Circadian Clock". Science. 286 (5440): 768–771. doi:10.1126/science.286.5440.768. ISSN   0036-8075. PMID   10531061.
  10. Cermakian, N. (2001-08-01). "Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene". The EMBO Journal. 20 (15): 3967–3974. doi:10.1093/emboj/20.15.3967. PMC   149149 . PMID   11483500.
  11. Steenhard, Brooke M.; Besharse, Joseph C. (2000-12-01). "Phase Shifting the Retinal Circadian Clock: xPer2 mRNA Induction by Light and Dopamine". The Journal of Neuroscience. 20 (23): 8572–8577. doi:10.1523/JNEUROSCI.20-23-08572.2000. ISSN   0270-6474. PMC   6773079 . PMID   11102460.
  12. 1 2 Partch, Carrie L.; Green, Carla B.; Takahashi, Joseph S. (February 2014). "Molecular architecture of the mammalian circadian clock". Trends in Cell Biology. 24 (2): 90–99. doi:10.1016/j.tcb.2013.07.002. ISSN   0962-8924. PMC   3946763 . PMID   23916625.
  13. 1 2 3 4 Padmanabhan, Kiran; Robles, Maria S.; Westerling, Thomas; Weitz, Charles J. (August 2012). "Feedback Regulation of Transcriptional Termination by the Mammalian Circadian Clock PERIOD Complex". Science. 337 (6094): 599–602. Bibcode:2012Sci...337..599P. doi:10.1126/science.1221592. ISSN   0036-8075. PMID   22767893. S2CID   35592602.
  14. 1 2 Callaway, Ewen (February 2020). "Revolutionary cryo-EM is taking over structural biology". Nature. 578 (7794): 201. Bibcode:2020Natur.578..201C. doi: 10.1038/d41586-020-00341-9 . PMID   32047310. S2CID   256819467.
  15. Storch, Kai-Florian; Lipan, Ovidiu; Leykin, Igor; Viswanathan, N.; Davis, Fred C.; Wong, Wing H.; Weitz, Charles J. (May 2002). "Extensive and divergent circadian gene expression in liver and heart". Nature. 417 (6884): 78–83. Bibcode:2002Natur.417...78S. doi:10.1038/nature744. ISSN   1476-4687. PMID   11967526. S2CID   4301811.
  16. Lamia, Katja A.; Storch, Kai-Florian; Weitz, Charles J. (September 2008). "Physiological significance of a peripheral tissue circadian clock". Proceedings of the National Academy of Sciences. 105 (39): 15172–15177. doi: 10.1073/pnas.0806717105 . ISSN   0027-8424. PMC   2532700 . PMID   18779586.
  17. Duong, H. A.; Robles, M. S.; Knutti, D.; Weitz, C. J. (June 2011). "A Molecular Mechanism for Circadian Clock Negative Feedback". Science. 332 (6036): 1436–1439. Bibcode:2011Sci...332.1436D. doi:10.1126/science.1196766. ISSN   0036-8075. PMC   3859310 . PMID   21680841.
  18. Kim, Jin Young; Kwak, Pielter Bas; Weitz, Charles J. (December 2014). "Specificity in Circadian Clock Feedback from Targeted Reconstitution of the NuRD Corepressor". Molecular Cell. 56 (6): 738–748. doi: 10.1016/j.molcel.2014.10.017 . ISSN   1097-2765. PMID   25453762.
  19. Aryal, Rajindra P.; Kwak, Pieter Bas; Tamayo, Alfred G.; Gebert, Michael; Chiu, Po-Lin; Walz, Thomas; Weitz, Charles J. (September 2017). "Macromolecular Assemblies of the Mammalian Circadian Clock". Molecular Cell. 67 (5): 770–782.e6. doi:10.1016/j.molcel.2017.07.017. PMC   5679067 . PMID   28886335. S2CID   37629139.
  20. "Junior Faculty Grantees – Giovanni Armenise Harvard Foundation" . Retrieved 2023-04-26.