Clairaut's theorem (gravity)

Last updated
Figure 1: An ellipsoid Elipsoid zplostely.png
Figure 1: An ellipsoid
Figure 2: Wireframe rendering of an ellipsoid (oblate spheroid) Gnuplot ellipsoid.svg
Figure 2: Wireframe rendering of an ellipsoid (oblate spheroid)

Clairaut's theorem characterizes the surface gravity on a viscous rotating ellipsoid in hydrostatic equilibrium under the action of its gravitational field and centrifugal force. It was published in 1743 by Alexis Claude Clairaut in a treatise [1] which synthesized physical and geodetic evidence that the Earth is an oblate rotational ellipsoid. [2] [3] It was initially used to relate the gravity at any point on the Earth's surface to the position of that point, allowing the ellipticity of the Earth to be calculated from measurements of gravity at different latitudes. Today it has been largely supplanted by the Somigliana equation.

Contents

History

Although it had been known since antiquity that the Earth was spherical, by the 17th century evidence was accumulating that it was not a perfect sphere. In 1672 Jean Richer found the first evidence that gravity was not constant over the Earth (as it would be if the Earth were a sphere); he took a pendulum clock to Cayenne, French Guiana and found that it lost 2+12 minutes per day compared to its rate at Paris. [4] [5] This indicated the acceleration of gravity was less at Cayenne than at Paris. Pendulum gravimeters began to be taken on voyages to remote parts of the world, and it was slowly discovered that gravity increases smoothly with increasing latitude, gravitational acceleration being about 0.5% greater at the poles than at the equator.

British physicist Isaac Newton explained this in his Principia Mathematica (1687) in which he outlined his theory and calculations on the shape of the Earth. [6] Newton theorized correctly that the Earth was not precisely a sphere but had an oblate ellipsoidal shape, slightly flattened at the poles due to the centrifugal force of its rotation. Using geometric calculations, he gave a concrete argument as to the hypothetical ellipsoid shape of the Earth. [7]

The goal of Principia was not to provide exact answers for natural phenomena, but to theorize potential solutions to these unresolved factors in science. Newton pushed for scientists to look further into the unexplained variables. Two prominent researchers that he inspired were Alexis Clairaut and Pierre Louis Maupertuis. They both sought to prove the validity of Newton's theory on the shape of the Earth. In order to do so, they went on an expedition to Lapland in an attempt to accurately measure a meridian arc. From such measurements they could calculate the eccentricity of the Earth, its degree of departure from a perfect sphere.

Clairaut confirmed that Newton's theory that the Earth was ellipsoidal was correct, but that his calculations were in error, and he wrote a letter to the Royal Society of London with his findings. [8] The society published an article in Philosophical Transactions the following year, 1737. [9] In it Clairaut pointed out (Section XVIII) that Newton's Proposition XX of Book 3 does not apply to the real earth. It stated that the weight of an object at some point in the earth depended only on the proportion of its distance from the centre of the earth to the distance from the centre to the surface at or above the object, so that the total weight of a column of water at the centre of the earth would be the same no matter in which direction the column went up to the surface. Newton had in fact said that this was on the assumption that the matter inside the earth was of a uniform density (in Proposition XIX). In fact, Newton realized that the density was probably not uniform, and proposed this as an explanation for why gravity measurements found a greater difference between polar regions and equatorial regions than what his theory predicted. However, he also thought this would meant the equator was further from the centre than what his theory predicted, and Clairaut points out that the opposite is true. Clairaut points out at the beginning of his article that Newton did not explain why he thought the earth was ellipsoid rather than like some other oval, but that Clairaut, and James Stirling almost simultaneously, had shown why the earth should be an ellipsoid in 1736.

Clairaut's article did not provide a valid equation to back up his argument as well. This created much controversy in the scientific community. It was not until Clairaut wrote Théorie de la figure de la terre in 1743 that a proper answer was provided. In it, he promulgated what is more formally known today as Clairaut's theorem.

Formula

Clairaut's formula for the acceleration due to gravity g on the surface of a spheroid at latitude φ, was: [10] [11]

where is the value of the acceleration of gravity at the equator, m the ratio of the centrifugal force to gravity at the equator, and f the flattening of a meridian section of the earth, defined as:

(where a = semimajor axis, b = semiminor axis).

Clairaut derived the formula under the assumption that the body was composed of concentric coaxial spheroidal layers of constant density. [12] This work was subsequently pursued by Laplace, who relaxed the initial assumption that surfaces of equal density were spheroids. [13] The English mathematician George Stokes showed in 1849 [14] that the theorem applied to any law of density so long as the external surface is a spheroid of equilibrium. [15] [16] A history of the subject, and more detailed equations for g can be found in Khan. [17]

The above expression for g has been supplanted by the Somigliana equation (after Carlo Somigliana).

Geodesy

The spheroidal shape of the Earth is the result of the interplay between gravity and centrifugal force caused by the Earth's rotation about its axis. [18] [19] In his Principia, Newton proposed the equilibrium shape of a homogeneous rotating Earth was a rotational ellipsoid with a flattening f given by 1/230. [20] [21] As a result, gravity increases from the equator to the poles. By applying Clairaut's theorem, Laplace found from 15 gravity values that f = 1/330. A modern estimate is 1/298.25642. [22] See Figure of the Earth for more detail.

For a detailed account of the construction of the reference Earth model of geodesy, see Chatfield. [23]

Related Research Articles

Isaac Newton's rotating bucket argument was designed to demonstrate that true rotational motion cannot be defined as the relative rotation of the body with respect to the immediately surrounding bodies. It is one of five arguments from the "properties, causes, and effects" of "true motion and rest" that support his contention that, in general, true motion and rest cannot be defined as special instances of motion or rest relative to other bodies, but instead can be defined only by reference to absolute space. Alternatively, these experiments provide an operational definition of what is meant by "absolute rotation", and do not pretend to address the question of "rotation relative to what?" General relativity dispenses with absolute space and with physics whose cause is external to the system, with the concept of geodesics of spacetime.

<span class="mw-page-title-main">Latitude</span> Geographic coordinate specifying north–south position

In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.

<span class="mw-page-title-main">Hydrostatic equilibrium</span> State of balance between external forces on a fluid and internal pressure gradient

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. In general, it is what causes objects in space to be spherical.

<span class="mw-page-title-main">Spheroid</span> Surface formed by rotating an ellipse

A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

<span class="mw-page-title-main">Equatorial bulge</span> Outward bulge around a planets equator due to its rotation

An equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Earth radius</span> Distance from the Earth surface to a point near its center

Earth radius is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid, the radius ranges from a maximum of nearly 6,378 km (3,963 mi) to a minimum of nearly 6,357 km (3,950 mi).

<span class="mw-page-title-main">Alexis Clairaut</span> French mathematician, astronomer, and geophysicist

Alexis Claude Clairaut was a French mathematician, astronomer, and geophysicist. He was a prominent Newtonian whose work helped to establish the validity of the principles and results that Sir Isaac Newton had outlined in the Principia of 1687. Clairaut was one of the key figures in the expedition to Lapland that helped to confirm Newton's theory for the figure of the Earth. In that context, Clairaut worked out a mathematical result now known as "Clairaut's theorem". He also tackled the gravitational three-body problem, being the first to obtain a satisfactory result for the apsidal precession of the Moon's orbit. In mathematics he is also credited with Clairaut's equation and Clairaut's relation.

<span class="mw-page-title-main">Figure of the Earth</span> Size and shape used to model the Earth for geodesy

In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is satisfactory for geography, astronomy and many other purposes. Several models with greater accuracy have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.

The gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity measured at every point on its surface would be given precisely by a simple algebraic expression. However, the Earth has a rugged surface and non-uniform composition, which distorts its gravitational field. The theoretical value of gravity can be corrected for altitude and the effects of nearby terrain, but it usually still differs slightly from the measured value. This gravity anomaly can reveal the presence of subsurface structures of unusual density. For example, a mass of dense ore below the surface will give a positive anomaly due to the increased gravitational attraction of the ore.

The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass. For objects where the surface is deep in the atmosphere and the radius not known, the surface gravity is given at the 1 bar pressure level in the atmosphere.

In classical mechanics, the shell theorem gives gravitational simplifications that can be applied to objects inside or outside a spherically symmetrical body. This theorem has particular application to astronomy.

<span class="mw-page-title-main">Gravity of Earth</span>

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

<span class="mw-page-title-main">Seconds pendulum</span> Pendulum whose period is precisely two seconds

A seconds pendulum is a pendulum whose period is precisely two seconds; one second for a swing in one direction and one second for the return swing, a frequency of 0.5 Hz.

In geodesy and navigation, a meridian arc is the curve between two points on the Earth's surface having the same longitude. The term may refer either to a segment of the meridian, or to its length.

<span class="mw-page-title-main">Earth ellipsoid</span> Geometric figure which approximates the Earths shape

An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.

<span class="mw-page-title-main">Centrifugal force</span> Type of inertial force

In Newtonian mechanics, the centrifugal force is an inertial force that appears to act on all objects when viewed in a rotating frame of reference. It is directed radially away from the axis of rotation. The magnitude of centrifugal force F on an object of mass m at the distance r from the axis of rotation of a frame of reference rotating with angular velocity ω is:

In geodesy and geophysics, theoretical gravity or normal gravity is an approximation of the true gravity on Earth's surface by means of a mathematical model representing Earth. The most common model of a smoothed Earth is a rotating Earth ellipsoid of revolution.

<span class="mw-page-title-main">Geodesics on an ellipsoid</span> Shortest paths on a bounded deformed sphere-like quadric surface

The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry.

A planetary coordinate system is a generalization of the geographic, geodetic, and the geocentric coordinate systems for planets other than Earth. Similar coordinate systems are defined for other solid celestial bodies, such as in the selenographic coordinates for the Moon. The coordinate systems for almost all of the solid bodies in the Solar System were established by Merton E. Davies of the Rand Corporation, including Mercury, Venus, Mars, the four Galilean moons of Jupiter, and Triton, the largest moon of Neptune.

References

  1. Théorie de la figure de la terre, tirée des principes de l'hydrostatique (Theory of the shape of the earth, drawn from the principles of hydrostatics) From the catalogue of the scientific books in the library of the Royal Society.
  2. Wolfgang Torge (2001). Geodesy: An Introduction (3rd ed.). Walter de Gruyter. p. 10. ISBN   3-11-017072-8.
  3. Edward John Routh (2001). A Treatise on Analytical Statics with Numerous Examples. Vol. 2. Adamant Media Corporation. p. 154. ISBN   1-4021-7320-2. A reprint of the original work published in 1908 by Cambridge University Press.
  4. Poynting, John Henry; Joseph John Thompson (1907). A Textbook of Physics, 4th Ed. London: Charles Griffin & Co. p.  20.
  5. Victor F., Lenzen; Robert P. Multauf (1964). "Paper 44: Development of gravity pendulums in the 19th century". United States National Museum Bulletin 240: Contributions from the Museum of History and Technology reprinted in Bulletin of the Smithsonian Institution. Washington: Smithsonian Institution Press. p. 307. Retrieved 2009-01-28.
  6. Propositions X-XXIV (Motions of celestial bodies and the sea), Propositions XIX and XX. Original Latin.
  7. Newton, Isaac. Principia, Book III, Proposition XIX, Problem III.
  8. Greenburg, John (1995). The Problem of the Earth's Shape from Newton to Clairaut. New York: Cambridge University Press. pp.  132. ISBN   0-521-38541-5.
  9. Clairaut, Alexis; Colson, John (1737). "An Inquiry concerning the Figure of Such Planets as Revolve about an Axis, Supposing the Density Continually to Vary, from the Centre towards the Surface". Philosophical Transactions. JSTOR   103921.
  10. W. W. Rouse Ball A Short Account of the History of Mathematics (4th edition, 1908)
  11. Walter William Rouse Ball (1901). A short account of the history of mathematics (3rd ed.). Macmillan. p.  384. A Short Account of the History of Mathematics' (4th edition, 1908) by W. W. Rouse Ball.
  12. Poynting, John Henry; Joseph John Thompson (1907). A Textbook of Physics (4th ed.). London: Charles Griffin & Co. pp.  22–23.
  13. Isaac Todhunter (January 1999). A History of the Mathematical Theories of Attraction and the Figure of the Earth from the Time of Newton to that of Laplace. Vol. 2. Elibron Classics. ISBN   1-4021-1717-5. Reprint of the original edition of 1873 published by Macmillan and Co.
  14. Stokes, G. G. (1849). "On attractions, and on Clairaut's theorem". The Cambridge and Dublin Mathematical Journal. 4: 194–219.
  15. Osmond Fisher (1889). Physics of the Earth's Crust. Macmillan and Co. p. 27.
  16. John Henry Poynting; Joseph John Thomson (1907). A Textbook of Physics. C. Griffin. p.  22. Clairaut's theorem.
  17. NASA case file On the equilibrium figure of the earth by Mohammad A. Khan (1968)
  18. John P. Vinti; Gim J. Der; Nino L. Bonavito (1998). Orbital and Celestial Mechanics. Progress in astronautics and aeronautics, v. 177. American Institute of Aeronautics and Astronautics. p. 171. ISBN   1-56347-256-2.
  19. Arthur Gordon Webster (1904). The Dynamics of Particles and of Rigid, Elastic, and Fluid Bodies: being lectures on mathematical physics. B.G. Teubner. p.  468.
  20. Isaac Newton: Principia Book III Proposition XIX Problem III, p. 407 in Andrew Motte translation.
  21. See the Principia on line at Andrew Motte Translation
  22. Table 1.1 IERS Numerical Standards (2003))
  23. Averil B. Chatfield (1997). Fundamentals of High Accuracy Inertial Navigation. Volume 174 in Progress in Astronautics and Aeronautics. American Institute of Aeronautics and Astronautics. Chapter 1, Part VIII p. 7. ISBN   1-56347-243-0.