Theoretical gravity

Last updated

In geodesy and geophysics, theoretical gravity or normal gravity is an approximation of Earth's gravity, on or near its surface, by means of a mathematical model. The most common theoretical model is a rotating Earth ellipsoid of revolution (i.e., a spheroid).

Contents

Other representations of gravity can be used in the study and analysis of other bodies, such as asteroids. Widely used representations of a gravity field in the context of geodesy include spherical harmonics, mascon models, and polyhedral gravity representations. [1]

Principles

The type of gravity model used for the Earth depends upon the degree of fidelity required for a given problem. For many problems such as aircraft simulation, it may be sufficient to consider gravity to be a constant, defined as: [2]

9.80665 m/s2 (32.1740 ft/s2)

based upon data from World Geodetic System 1984 (WGS-84), where is understood to be pointing 'down' in the local frame of reference.

If it is desirable to model an object's weight on Earth as a function of latitude, one could use the following: [2] :41

where

Neither of these accounts for changes in gravity with changes in altitude, but the model with the cosine function does take into account the centrifugal relief that is produced by the rotation of the Earth. On the rotating sphere, the sum of the force of the gravitational field and the centrifugal force yields an angular deviation of approximately

(in radians) between the direction of the gravitational field and the direction measured by a plumb line; the plumb line appears to point southwards on the northern hemisphere and northwards on the southern hemisphere. rad/s is the diurnal angular speed of the Earth axis, and km the radius of the reference sphere, and the distance of the point on the Earth crust to the Earth axis. [3]

For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the mass center. When the rotational component is included (as above), the gravity at the equator is about 0.53% less than that at the poles, with gravity at the poles being unaffected by the rotation. So the rotational component of change due to latitude (0.35%) is about twice as significant as the mass attraction change due to latitude (0.18%), but both reduce strength of gravity at the equator as compared to gravity at the poles.

Note that for satellites, orbits are decoupled from the rotation of the Earth so the orbital period is not necessarily one day, but also that errors can accumulate over multiple orbits so that accuracy is important. For such problems, the rotation of the Earth would be immaterial unless variations with longitude are modeled. Also, the variation in gravity with altitude becomes important, especially for highly elliptical orbits.

The Earth Gravitational Model 1996 (EGM96) contains 130,676 coefficients that refine the model of the Earth's gravitational field. [2] :40 The most significant correction term is about two orders of magnitude more significant than the next largest term. [2] :40 That coefficient is referred to as the term, and accounts for the flattening of the poles, or the oblateness, of the Earth. (A shape elongated on its axis of symmetry, like an American football, would be called prolate.) A gravitational potential function can be written for the change in potential energy for a unit mass that is brought from infinity into proximity to the Earth. Taking partial derivatives of that function with respect to a coordinate system will then resolve the directional components of the gravitational acceleration vector, as a function of location. The component due to the Earth's rotation can then be included, if appropriate, based on a sidereal day relative to the stars (≈366.24 days/year) rather than on a solar day (≈365.24 days/year). That component is perpendicular to the axis of rotation rather than to the surface of the Earth.

A similar model adjusted for the geometry and gravitational field for Mars can be found in publication NASA SP-8010. [4]

The barycentric gravitational acceleration at a point in space is given by:

where:

M is the mass of the attracting object, is the unit vector from center-of-mass of the attracting object to the center-of-mass of the object being accelerated, r is the distance between the two objects, and G is the gravitational constant.

When this calculation is done for objects on the surface of the Earth, or aircraft that rotate with the Earth, one has to account for the fact that the Earth is rotating and the centrifugal acceleration has to be subtracted from this. For example, the equation above gives the acceleration at 9.820 m/s2, when GM = 3.986 × 1014 m3/s2, and R = 6.371 × 106 m. The centripetal radius is r = R cos(φ), and the centripetal time unit is approximately (day / 2π), reduces this, for r = 5 × 106 metres, to 9.79379 m/s2, which is closer to the observed value. [ citation needed ]

Basic formulas

Various, successively more refined, formulas for computing the theoretical gravity are referred to as the International Gravity Formula, the first of which was proposed in 1930 by the International Association of Geodesy. The general shape of that formula is:

in which g(φ) is the gravity as a function of the geographic latitude φ of the position whose gravity is to be determined, denotes the gravity at the equator (as determined by measurement), and the coefficients A and B are parameters that must be selected to produce a good global fit to true gravity. [5]

Using the values of the GRS80 reference system, a commonly used specific instantiation of the formula above is given by:

[5]

Using the appropriate double-angle formula in combination with the Pythagorean identity, this can be rewritten in the equivalent forms

Up to the 1960s, formulas based on the Hayford ellipsoid (1924) and of the famous German geodesist Helmert (1906) were often used.[ citation needed ] The difference between the semi-major axis (equatorial radius) of the Hayford ellipsoid and that of the modern WGS84 ellipsoid is 251 m; for Helmert's ellipsoid it is only 63 m.

Somigliana equation

A more recent theoretical formula for gravity as a function of latitude is the International Gravity Formula 1980 (IGF80), also based on the GRS80 ellipsoid but now using the Somigliana equation (after Carlo Somigliana (1860–1955) [6] ):

where, [7]

providing,

[5]

A later refinement, based on the WGS84 ellipsoid, is the WGS (World Geodetic System) 1984 Ellipsoidal Gravity Formula: [7]

(where = 9.8321849378 ms−2)

The difference with IGF80 is insignificant when used for geophysical purposes, [5] but may be significant for other uses.

Further details

For the normal gravity of the sea level ellipsoid, i.e., elevation h = 0, this formula by Somigliana (1929) applies:

with

Due to numerical issues, the formula is simplified to this:

with


For the Geodetic Reference System 1980 (GRS 80) the parameters are set to these values:

Approximation formula from series expansions

The Somigliana formula was approximated through different series expansions, following this scheme:

International gravity formula 1930

The normal gravity formula by Gino Cassinis was determined in 1930 by International Union of Geodesy and Geophysics as international gravity formula along with Hayford ellipsoid. The parameters are:

In the course of time the values were improved again with newer knowledge and more exact measurement methods.

Harold Jeffreys improved the values in 1948 at:

International gravity formula 1967

The normal gravity formula of Geodetic Reference System 1967 is defined with the values:

International gravity formula 1980

From the parameters of GRS 80 comes the classic series expansion:

The accuracy is about ±10−6 m/s2.

With GRS 80 the following series expansion is also introduced:

As such the parameters are:

The accuracy is at about ±10−9 m/s2 exact. When the exactness is not required, the terms at further back can be omitted. But it is recommended to use this finalized formula.

Height dependence

Cassinis determined the height dependence, as:

The average rock density  ρ is no longer considered.

Since GRS 1967 the dependence on the ellipsoidal elevation  h is:

Another expression is:

with the parameters derived from GRS80:

where with : [8]

This adjustment is about right for common heights in aviation; but for heights up to outer space (over ca. 100 kilometers) it is out of range.

WELMEC formula

In all German standards offices the free-fall acceleration g is calculated in respect to the average latitude φ and the average height above sea level  h with the WELMEC–Formel:

The formula is based on the International gravity formula from 1967.

The scale of free-fall acceleration at a certain place must be determined with precision measurement of several mechanical magnitudes. Weighing scales, the mass of which does measurement because of the weight, relies on the free-fall acceleration, thus for use they must be prepared with different constants in different places of use. Through the concept of so-called gravity zones, which are divided with the use of normal gravity, a weighing scale can be calibrated by the manufacturer before use. [9]

Example

Free-fall acceleration in Schweinfurt:

Data:

Free-fall acceleration, calculated through normal gravity formulas:

See also

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Solid angle</span> Measure of how large an object appears to an observer at a given point in three-dimensional space

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In physics, the gyromagnetic ratio of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol γ, gamma. Its SI unit is the radian per second per tesla (rad⋅s−1⋅T−1) or, equivalently, the coulomb per kilogram (C⋅kg−1).

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

The diabatic representation as a mathematical tool for theoretical calculations of atomic collisions and of molecular interactions.

<span class="mw-page-title-main">Tissot's indicatrix</span> Characterization of distortion in map projections

In cartography, a Tissot's indicatrix is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

<span class="mw-page-title-main">Great-circle navigation</span> Flight or sailing route along the shortest path between two points on a globes surface

Great-circle navigation or orthodromic navigation is the practice of navigating a vessel along a great circle. Such routes yield the shortest distance between two points on the globe.

<span class="mw-page-title-main">Gravity of Earth</span>

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space rather than just the real line.

In geodesy and navigation, a meridian arc is the curve between two points on the Earth's surface having the same longitude. The term may refer either to a segment of the meridian, or to its length.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

<span class="mw-page-title-main">Geodesics on an ellipsoid</span> Shortest paths on a bounded deformed sphere-like quadric surface

The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry.

References

  1. Izzo, Dario; Gómez, Pablo (2022-12-28). "Geodesy of irregular small bodies via neural density fields". Communications Engineering. 1 (1): 48. arXiv: 2105.13031 . Bibcode:2022CmEng...1...48I. doi: 10.1038/s44172-022-00050-3 . ISSN   2731-3395. PMC   10956048 .
  2. 1 2 3 4 Brian L. Stevens; Frank L. Lewis (2003). Aircraft Control And Simulation, 2nd Ed. Hoboken, New Jersey: John Wiley & Sons, Inc. ISBN   978-0-471-37145-8.
  3. de Icaza-Herrera, M.; Castano, V. M. (2011). "Generalized Lagrangian of the parametric Foucault pendulum with dissipative forces". Acta Mech. 218 (1–2): 45–64. doi:10.1007/s00707-010-0392-8.
  4. Richard B. Noll; Michael B. McElroy (1974), "Models of Mars' Atmosphere [1974]", Space Vehicle Design Criteria (Environment), Greenbelt, Maryland: NASA Goddard Space Flight Center, Bibcode:1974svdc.rept......, SP-8010.
  5. 1 2 3 4 William J. Hinze; Ralph R. B. von Frese; Afif H. Saad (2013). Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge University Press. p. 130. ISBN   978-1-107-32819-8.
  6. Biografie Somiglianas Archived 2010-12-07 at the Wayback Machine (ital.)
  7. 1 2 Department of Defense World Geodetic System 1984 — Its Definition and Relationships with Local Geodetic Systems,NIMA TR8350.2, 3rd ed., Tbl. 3.4, Eq. 4-1
  8. Xiong Li; Hans-Jürgen Götzez. "Tutorial: Ellipsoid, geoid, gravity, geodesy, and geophysics" (PDF). Retrieved 29 March 2024.{{cite web}}: CS1 maint: multiple names: authors list (link) 988kB
  9. Roman Schwartz, Andreas Lindau. "Das europäische Gravitationszonenkonzept nach WELMEC" (PDF) (in German). Retrieved 26 February 2011. 700kB

Further reading