Classical swine fever

Last updated
Pestivirus C
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Kitrinoviricota
Class: Flasuviricetes
Order: Amarillovirales
Family: Flaviviridae
Genus: Pestivirus
Species:
Pestivirus C
Synonyms
  • Classical swine fever virus [1]
  • Hog cholera virus [2]
  • Hog cholera (European swine fever) virus [3]

Classical swine fever (CSF) or hog cholera (also sometimes called pig plague based on the German word Schweinepest) is a highly contagious disease of swine (Old World and New World pigs). [4] It has been mentioned as a potential bioweapon. [5]

Contents

Clinical signs

Swine fever causes fever, skin lesions, convulsions, splenic infarctions and usually (particularly in young animals) death within 15 days.[ citation needed ]

The disease has acute and chronic forms, and can range from severe, with high mortality, to mild or even unapparent.[ citation needed ]

In the acute form of the disease, in all age groups, there is fever, huddling of sick animals, loss of appetite, dullness, weakness, conjunctivitis, constipation followed by diarrhoea, and an unsteady gait. Several days after the onset of clinical signs, the ears, abdomen and inner thighs may show a purple discoloration. Animals with acute disease die within 1–2 weeks. Severe cases of the disease appear very similar to African swine fever. With low-virulence strains, the only expression may be poor reproductive performance and the birth of piglets with neurologic defects such as congenital tremor. [6]

Immunization

A small fraction of the infected pigs may survive and are rendered immune. Artificial immunization procedures were first developed by Marion Dorset. [7] [8]

Epidemiology

The disease is endemic in much of Asia, [Central and South America, and parts of Europe and Africa. [9] It was believed to have been eradicated in the United Kingdom by 1966 (according to the Department for Environment, Food and Rural Affairs), but an outbreak occurred in East Anglia in 2000. On January 31, 1978 USDA Secretary Bob Bergland declared that the United States was free of the disease. [10] The appearance of CSF in Italy and Spain was traced by in a retroactive genetic analysis. [11] Greiser-Wilke et al., 2000 traced these to shipments of piglets from the Netherlands. [11]

Other regions believed free of CSF include Australia, Belgium (1998), Canada (1962), Ireland, New Zealand, and Scandinavia.[ citation needed ]

Virus

Pinpoint hemorrhages on the kidneys are characteristic of classical swine fever. Classical swine fever kidneys.jpg
Pinpoint hemorrhages on the kidneys are characteristic of classical swine fever.

The infectious agent responsible is a virus CSFV (previously called hog cholera virus) of the genus Pestivirus in the family Flaviviridae . [4] [12] CSFV is closely related to the ruminant pestiviruses that cause bovine viral diarrhoea and border disease. [13]

The effect of different CSFV strains varies widely, leading to a wide range of clinical signs. Highly virulent strains correlate with acute, obvious disease and high mortality, including neurological signs and hemorrhages within the skin.[ citation needed ]

Less virulent strains can give rise to subacute or chronic infections that may escape detection, while still causing abortions and stillbirths. In these cases, herds in high-risk areas are usually serologically tested on a thorough statistical basis.[ citation needed ]

Infected piglets born to infected but subclinical sows help maintain the disease within a population. Other signs can include lethargy, fever, immunosuppression, chronic diarrhoea, and secondary respiratory infections. The incubation period of CSF ranges from 2 to 14 days, but clinical signs may not be apparent until after 2 to 3 weeks. Preventive state regulations usually assume 21 days as the outside limit of the incubation period. Animals with an acute infection can survive 2 to 3 months before their eventual death.[ citation needed ]

Eradicating CSF is problematic. Current programmes revolve around rapid detection, diagnosis, and slaughter. This may possibly be followed by emergency vaccination (ATCvet codes: QI09AA06 ( WHO ) for the inactivated viral vaccine, QI09AD04 ( WHO ) for the live vaccine). Vaccination is only used where the virus is widespread in the domestic pig population and/or in wild or feral pigs. In the latter case, a slaughter policy alone is usually impracticable. Instead, countries within the EU have implemented hunting restrictions designed to limit the movement of infected boars, as well as using marker and emergency vaccines to inhibit the spread of infection. [14] Possible sources for maintaining and introducing infection include the wide transport of pigs and pork products, as well as endemic CSF within wild boar and feral pig populations.

Strains

Diagnosis

Standard diagnostic tests include

Histopathological examination

See also

Related Research Articles

<span class="mw-page-title-main">Swine influenza</span> Infection caused by influenza viruses endemic to pigs

Swine influenza is an infection caused by any of several types of swine influenza viruses. Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) refers to any strain of the influenza family of viruses that is endemic in pigs. As of 2009, identified SIV strains include influenza C and the subtypes of influenza A known as H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3.

Betaarterivirus suid 1, commonly Porcine reproductive and respiratory syndrome virus (PRRSV), is a virus that causes a disease of pigs, called porcine reproductive and respiratory syndrome (PRRS), also known as blue-ear pig disease. This economically important, panzootic disease causes reproductive failure in breeding stock and respiratory tract illness in young pigs.

<i>Pestivirus</i> Genus of viruses

Pestivirus is a genus of viruses, in the family Flaviviridae. Viruses in the genus Pestivirus infect mammals, including members of the family Bovidae and the family Suidae. There are 11 species in this genus. Diseases associated with this genus include: hemorrhagic syndromes, abortion, and fatal mucosal disease.

Porcine parvovirus (PPV), a virus in the species Ungulate protoparvovirus 1 of genus Protoparvovirus in the virus family Parvoviridae, causes reproductive failure of swine characterized by embryonic and fetal infection and death, usually in the absence of outward maternal clinical signs. The disease develops mainly when seronegative dams are exposed oronasally to the virus anytime during about the first half of gestation, and conceptuses are subsequently infected transplacentally before they become immunocompetent. There is no definitive evidence that infection of swine other than during gestation is of any clinical or economic significance. The virus is ubiquitous among swine throughout the world and is enzootic in most herds that have been tested. Diagnostic surveys have indicated that PPV is the major infectious cause of embryonic and fetal death. In addition to its direct causal role in reproductive failure, PPV can potentiate the effects of porcine circovirus type II (PCV2) infection in the clinical course of postweaning multisystemic wasting syndrome (PMWS).

Aujeszky's disease, usually called pseudorabies in the United States, is a viral disease in swine that is endemic in most parts of the world. It is caused by Suid herpesvirus 1 (SuHV-1). Aujeszky's disease is considered to be the most economically important viral disease of swine in areas where classical swine fever has been eradicated. Other mammals, such as cattle, sheep, goats, cats, dogs, and raccoons, are also susceptible. The disease is usually fatal in these animal species.

<i>Feline calicivirus</i> Species of virus

Feline calicivirus (FCV) is a virus of the family Caliciviridae that causes disease in cats. It is one of the two important viral causes of respiratory infection in cats, the other being Felid alphaherpesvirus 1. FCV can be isolated from about 50% of cats with upper respiratory infections. Cheetahs are the other species of the family Felidae known to become infected naturally.

<i>African swine fever virus</i> Species of virus

African swine fever virus (ASFV) is a large, double-stranded DNA virus in the Asfarviridae family. It is the causative agent of African swine fever (ASF). The virus causes a hemorrhagic fever with high mortality rates in domestic pigs; some isolates can cause death of animals as quickly as a week after infection. It persistently infects its natural hosts, warthogs, bushpigs, and soft ticks of the genus Ornithodoros, which likely act as a vector, with no disease signs. It does not cause disease in humans. ASFV is endemic to sub-Saharan Africa and exists in the wild through a cycle of infection between ticks and wild pigs, bushpigs, and warthogs. The disease was first described after European settlers brought pigs into areas endemic with ASFV, and as such, is an example of an emerging infectious disease.

<span class="mw-page-title-main">Bovine viral diarrhea</span> Significant economic disease of cattle caused by two species of Pestivirus

Bovine viral diarrhea (BVD), bovine viral diarrhoea or mucosal disease, previously referred to as bovine virus diarrhea (BVD), is an economically significant disease of cattle that is found in the majority of countries throughout the world. Worldwide reviews of the economically assessed production losses and intervention programs incurred by BVD infection have been published. The causative agent, bovine viral diarrhea virus (BVDV), is a member of the genus Pestivirus of the family Flaviviridae.

Swine vesicular disease (SVD) is an acute, contagious viral disease of swine caused by swine vesicular disease virus, an Enterovirus. It is characterized by fever and vesicles with subsequent ulcers in the mouth and on the snout, feet, and teats. The pathogen is relatively resistant to heat, and can persist for a long time in salted, dried, and smoked meat products. Swine vesicular disease does not cause economically important disease, but is important due to its similarity to foot-and-mouth disease.

<span class="mw-page-title-main">Veterinary virology</span> Study of viruses affecting animals

Veterinary virology is the study of viruses in non-human animals. It is an important branch of veterinary medicine.

<span class="mw-page-title-main">Foot-and-mouth disease</span> Infectious disease affecting cattle

Foot-and-mouth disease (FMD) or hoof-and-mouth disease (HMD) is an infectious and sometimes fatal viral disease that affects cloven-hoofed animals, including domestic and wild bovids. The virus causes a high fever lasting two to six days, followed by blisters inside the mouth and near the hoof that may rupture and cause lameness.

Porcine epidemic diarrhea is a condition caused by the porcine epidemic diarrhea virus that leads to severe gastrointestinal disease in pigs.

<i>Porcine epidemic diarrhea virus</i> Species of virus

Porcine epidemic diarrhea virus is a coronavirus that infects the cells lining the small intestine of a pig, causing porcine epidemic diarrhoea, a condition of severe diarrhea and dehydration. Older hogs mostly get sick and lose weight after being infected, whereas newborn piglets usually die within five days of contracting the virus. PEDV cannot be transmitted to humans, nor contaminate the human food supply.

Risk assessment for organic swine health is the process of evaluating the likelihood and potential impact of various factors that may affect the health and well-being of organic swine. Risks associated with organic swine farming may differ to those associated with non-organic swine farming, and is of increasing relevance due to growth in the sector. While organic swine farming makes up a small share of U.S. swine farming overall, numbers have increased significantly in recent years. Additionally, non-certified organic swine herds are not accounted in official statistics. Consumer demand, stemming from the larger organic agriculture movement has helped spur growth in this industry.

Suipoxvirus is a genus of viruses in the family Poxviridae and subfamily Chordopoxvirinae. Swine serve as natural hosts. There is only one species in this genus: Swinepox virus. Diseases associated with this genus include asymptomatic skin disease.

<span class="mw-page-title-main">James E. Collins</span> American veterinary physician and academic

James E. Collins is an American veterinary physician and academic. He is the professor of medicine at the University of Minnesota and its Director of the veterinary diagnostic laboratory.

A Foreign animal disease (FAD) is an animal disease or pest, whether terrestrial or aquatic, not known to exist in the United States or its territories. When these diseases can significantly affect human health or animal production and when there is significant economic cost for disease control and eradication efforts, they are considered a threat to the United States. Another term gaining preference to be used is Transboundary Animal Disease (TAD), which is defined as those epidemic diseases which are highly contagious or transmissible and have the potential for very rapid spread, irrespective of national borders, causing serious socio-economic and possibly public health consequences. An Emerging Animal Disease "may be defined as any terrestrial animal, aquatic animal, or zoonotic disease not yet known or characterized, or any known or characterized terrestrial animal or aquatic animal disease in the United States or its territories that changes or mutates in pathogenicity, communicability, or zoonotic potential to become a threat to terrestrial animals, aquatic animals, or humans."

Border disease (BD) is a viral disease of sheep and goats, primarily causing congenital diseases, but can also cause acute and persistent infections. It first appeared in the border regions of England and Wales in 1959, and has since spread world-wide. Lambs that are born with BD are commonly known as 'hairy shakers' due to the primary presentation of the disease. The disease was recognized before the virus, therefore the common name of the disease predates the understanding of the viral pathology. The virus can cause a significant reduction in the percentage of surviving lambs, thus it has a large economic impact on farmers.

<span class="mw-page-title-main">Erzsébet Simonyi</span> Hungarian veterinary scientist

Erzsébet Simonyi was a veterinarian in Hungary and the first woman to gain a veterinary degree in Hungary (1937). She began a private practice in 1940 and from 1948 to 1952 worked at Phylaxia Vaccine Production Company. In 1952, she became the first woman to head a scientific institution in Hungary, when she was asked to found the Veterinary Vaccine Control Institute for the Department of Agriculture. The purpose of the institute was to develop immunization processes and controls for developing and administering vaccines and Simonyi led it until 1971. In 2012, the Institute became the Directorate of Veterinary Products of the National Food Chain Safety Office.

<i>Alphacoronavirus 1</i> Species of virus

Alphacoronavirus 1 is a species of coronavirus that infects cats, dogs and pigs. It includes the virus strains feline coronavirus, canine coronavirus, and transmissible gastroenteritis virus. It is an enveloped, positive-strand RNA virus which is able to enter its host cell by binding to the APN receptor.

References

  1. Smith, Donald B.; et al. (31 May 2017). "Renaming four species and creating seven new species in the genus Pestivirus". International Committee on Taxonomy of Viruses. Retrieved 21 August 2019. ...Classical swine fever virus becomes Pestivirus C...
  2. ICTV 7th Report van Regenmortel, M.H.V., Fauquet, C.M., Bishop, D.H.L., Carstens, E.B., Estes, M.K., Lemon, S.M., Maniloff, J., Mayo, M.A., McGeoch, D.J., Pringle, C.R. and Wickner, R.B. (2000). Virus taxonomy. Seventh report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego. 1162 pp.
  3. ICTV 6th Report Murphy, F. A., Fauquet, C. M., Bishop, D. H. L., Ghabrial, S. A., Jarvis, A. W. Martelli, G. P. Mayo, M. A. & Summers, M. D.(eds) (1995). Virus Taxonomy. Sixthreport of the International Committee on Taxonomy of Viruses. Archives of Virology Supplement 10, 590
  4. 1 2 Classical Swine Fever, The Center for Food Security and Public Health / The Institute for International Cooperation in Animal Biologics, College of Veterinary Medicine, Iowa State University, update September 2009.
  5. Dudley, Joseph P.; Woodford, Michael H. (1 July 2002). "Bioweapons, Biodiversity, and Ecocide: Potential Effects of Biological Weapons on Biological DiversityBioweapon disease outbreaks could cause the extinction of endangered wildlife species, the erosion of genetic diversity in domesticated plants and animals, the destruction of traditional human livelihoods, and the extirpation of indigenous cultures". BioScience. 52 (7): 583–592. doi: 10.1641/0006-3568(2002)052[0583:BBAEPE]2.0.CO;2 . ISSN   0006-3568.
  6. "Classical swine fever".
  7. "Marion Dorset: American Biochemist/Colleen Farrell 2002" (PDF). Archived from the original (PDF) on 2015-04-15.
  8. "Agricultural Hall of Fame :: Hall of Fame Inductee". Archived from the original on 2015-04-12. Retrieved 2015-04-06., Marion Dorset/National Agricultural Hall of Fame
  9. Arzt; et al. (2010). "Agricultural Diseases on the Move Early in the Third Millennium". Veterinary Pathology. 47 (1): 15–27. doi:10.1177/0300985809354350. PMID   20080480. S2CID   31753926.
  10. Bill Kemp (April 17, 2016). "PFOP: Hog cholera ravaged countryside in 1913". Pantagraph-Bloomington, Illinois . Retrieved February 9, 2020.
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 Moennig, V.; Floegel-Niesmann, G.; Greiser-Wilke, I. (2003). "Clinical Signs and Epidemiology of Classical Swine Fever: A Review of New Knowledge". The Veterinary Journal . Elsevier. 165 (1): 11–20. doi:10.1016/s1090-0233(02)00112-0. ISSN   1090-0233. PMID   12618065.
  12. "Exotic animal diseases - Classical swine fever". Archived from the original on August 22, 2003.
  13. Rumenapf and Thiel (2008). "Molecular Biology of Pestiviruses". Animal Viruses: Molecular Biology. Caister Academic Press. ISBN   978-1-904455-22-6.
  14. Moennig, V; Floegel-Niesmann, G; Greiser-Wilke, I (2003-01-01). "Clinical Signs and Epidemiology of Classical Swine Fever: A Review of New Knowledge". The Veterinary Journal. 165 (1): 11–20. doi:10.1016/S1090-0233(02)00112-0. PMID   12618065.
  15. 1 2 3 4 5 6 7 8 9 10 11 Blome, Sandra; Staubach, Christoph; Henke, Julia; Carlson, Jolene; Beer, Martin (2017-04-21). "Classical Swine Fever—An Updated Review". Viruses . MDPI. 9 (4): 86. doi: 10.3390/v9040086 . PMC   5408692 . PMID   28430168.
  16. 1 2 Paton, D.J.; Greiser-Wilke, I. (2003). "Classical swine fever – an update". Research in Veterinary Science . Elsevier. 75 (3): 169–178. doi:10.1016/s0034-5288(03)00076-6. ISSN   0034-5288. PMID   13129664.
  17. 1 2 3 4 5 "Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2022" (PDF). World Organization for Animal Health. 28 June 2022. Retrieved 10 November 2022.