Clear-air turbulence

Last updated

In meteorology, clear-air turbulence (CAT) is the turbulent movement of air masses in the absence of any visual clues, such as clouds, and is caused when bodies of air moving at widely different speeds meet.

Contents

The atmospheric region most susceptible to CAT is the high troposphere at altitudes of around 7,000–12,000 metres (23,000–39,000 ft) as it meets the tropopause. Here CAT is most frequently encountered in the regions of jet streams. At lower altitudes it may also occur near mountain ranges. Thin cirrus clouds can also indicate high probability of CAT.

CAT can be hazardous to the comfort, and occasionally the safety, of air travelers. [1]

Definition

In meteorology, clear-air turbulence (CAT) is the turbulent movement of air masses in the absence of any visual clues, such as clouds, and is caused when bodies of air moving at widely different speeds meet. [2]

In aviation, CAT is defined as "the detection by aircraft of high-altitude inflight bumps in patchy regions devoid of significant cloudiness or nearby thunderstorm activity". [3] It was first noted in the 1940s. [4]

Detection

Clear-air turbulence is usually impossible to detect with the naked eye and very difficult to detect with a conventional radar, [5] with the result that it is difficult for aircraft pilots to detect and avoid it. However, it can be remotely detected with instruments that can measure turbulence with optical techniques, such as scintillometers, Doppler LIDARs, or N-slit interferometers. [6]

Factors

At typical heights where it occurs, the intensity and location cannot be determined precisely. However, because this turbulence affects long range aircraft that fly near the tropopause, CAT has been intensely studied. Several factors affect the likelihood of CAT. Often more than one factor is present.

As of 1965 it had been noted that 64% of the non-light turbulences (not only CAT) were observed less than 150 nautical miles (280 km) away from the core of a jet stream. Jet stream produces horizontal wind shear at its edges, caused by the different relative air speeds of the stream and the surrounding air. Wind shear, a difference in relative speed between two adjacent air masses, can produce vortices, and when of sufficient degree, the air will tend to move chaotically. [7]

A strong anticyclone vortex can also lead to CAT. [8]

Background information

A jet stream alone will rarely be the cause of CAT, although there is horizontal wind shear at its edges and within it.

Rossby waves caused by this jet stream shear and the Coriolis force cause it to meander.[ clarification needed ]

Although the altitudes near the tropopause are usually cloudless, thin cirrus cloud can form where there are abrupt changes of air velocity, for example associated with jet streams. Lines of cirrus perpendicular to the jet stream indicate possible CAT, especially if the ends of the cirrus are dispersed, in which case the direction of dispersal can indicate if the CAT is stronger at the left or at the right of the jet stream.

A temperature gradient is the change of temperature over a distance in some given direction. Where the temperature of a gas changes, so does its density and where the density changes CAT can appear.

From the ground upwards through the troposphere temperature decreases with height; from the tropopause upwards through the stratosphere temperature increases with height. Such variations are examples of temperature gradients.

A horizontal temperature gradient may occur, and hence air density variations, where air velocity changes. An example: the speed of the jet stream is not constant along its length; additionally air temperature and hence density will vary between the air within the jet stream and the air outside.

Cirrus clouds often associated with clear-air turbulence Air turbulence.jpg
Cirrus clouds often associated with clear-air turbulence

As is explained elsewhere in this article, temperature decreases and wind velocity increase with height in the troposphere, and the reverse is true within the stratosphere. These differences cause changes in air density, and hence viscosity. The viscosity of the air thus presents both inertias and accelerations which cannot be determined in advance.

Vertical wind shear above the jet stream (i.e., in the stratosphere) is sharper when it is moving upwards, because wind speed decreases with height in the stratosphere. This is the reason CAT can be generated above the tropopause, despite the stratosphere otherwise being a region which is vertically stable. On the other hand, vertical wind shear moving downwards within the stratosphere is more moderate (i.e., because downwards wind shear within the stratosphere is effectively moving against the manner in which wind speed changes within the stratosphere) and CAT is never produced in the stratosphere. Similar considerations apply to the troposphere but in reverse.

When strong wind deviates, the change of wind direction implies a change in the wind speed. A stream of wind can change its direction by differences of pressure. CAT appears more frequently when the wind is surrounding a low pressure region, especially with sharp troughs that change the wind direction more than 100°. Extreme CAT has been reported without any other factor than this.

Wind flow over a mountain produces oscillations (A), (B) etc. Vol d'onde.svg
Wind flow over a mountain produces oscillations (A), (B) etc.

Mountain waves are formed when four requirements are met. When these factors coincide with jet streams, CAT can occur:

The tropopause is a layer which separates two very different types of air. Beneath it, the air gets colder and the wind gets faster with height. Above it, the air warms and wind velocity decreases with height. These changes in temperature and velocity can produce fluctuation in the altitude of the tropopause, called gravity waves.

Effects on aircraft

In the context of air flight, CAT is sometimes colloquially referred to as "air pockets".[ citation needed ]

Standard airplane radars cannot detect CAT, as CAT is not associated with clouds that show unpredictable movement of the air. Airlines and pilots should be aware of factors that cause or indicate CAT to reduce the probability of meeting turbulence.[ citation needed ]

Aircraft in level flight rely on a constant air density to retain stability. Where air density is significantly different, for instance because of temperature gradient, especially at the tropopause, CAT can occur.[ citation needed ]

Where an aircraft changes its position horizontally from within the jet stream to outside the jet stream, or vice versa, a horizontal temperature gradient may be experienced. Because jet streams meander, such a change of position need not be the result of a change of course by the aircraft.[ citation needed ]

Because the altitude of the tropopause is not constant, an airplane that flies at a constant altitude would traverse it and encounter any associated CAT.[ citation needed ]

Pilot rules

When a pilot experiences CAT, a number of rules should be applied: [9]

Cases

Because aircraft move so quickly, they can experience sudden unexpected accelerations or 'bumps' from turbulence, including CAT – as the aircraft rapidly cross invisible bodies of air which are moving vertically at many different speeds. Although the vast majority of cases of turbulence are harmless, in rare cases cabin crew and passengers on aircraft have been injured when tossed around inside an aircraft cabin during extreme turbulence. In a small number of cases, people have been killed.

See also

Related Research Articles

<span class="mw-page-title-main">Jet stream</span> Fast-flowing atmospheric air current

Jet streams are fast flowing, narrow, meandering air currents in the atmospheres of the Earth, Venus, Jupiter, Saturn, Uranus, and Neptune. On Earth, the main jet streams are located near the altitude of the tropopause and are westerly winds. Jet streams may start, stop, split into two or more parts, combine into one stream, or flow in various directions including opposite to the direction of the remainder of the jet.

<span class="mw-page-title-main">Troposphere</span> Lowest layer of Earths atmosphere

The troposphere is the lowest layer of the atmosphere of Earth. It contains 80% of the total mass of the planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the planetary surface of the Earth, the average height of the troposphere is 18 km in the tropics; 17 km in the middle latitudes; and 6 km in the high latitudes of the polar regions in winter; thus the average height of the troposphere is 13 km.

<span class="mw-page-title-main">Stratosphere</span> Layer of the atmosphere above the troposphere

The stratosphere is the second layer of the atmosphere of Earth, located above the troposphere and below the mesosphere. The stratosphere is an atmospheric layer composed of stratified temperature layers, with the warm layers of air high in the sky and the cool layers of air in the low sky, close to the planetary surface of the Earth. The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the ozone layer. The temperature inversion is in contrast to the troposphere, and near the Earth's surface, where temperature decreases with altitude.

<span class="mw-page-title-main">Cloud</span> Visible mass of liquid droplets or frozen crystals suspended in the atmosphere

In meteorology, a cloud is an aerosol consisting of a visible mass of miniature liquid droplets, frozen crystals, or other particles suspended in the atmosphere of a planetary body or similar space. Water or various other chemicals may compose the droplets and crystals. On Earth, clouds are formed as a result of saturation of the air when it is cooled to its dew point, or when it gains sufficient moisture from an adjacent source to raise the dew point to the ambient temperature.

Altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context. Although the term altitude is commonly used to mean the height above sea level of a location, in geography the term elevation is often preferred for this usage.

<span class="mw-page-title-main">Tropopause</span> The boundary of the atmosphere between the troposphere and stratosphere

The tropopause is the atmospheric boundary that demarcates the troposphere from the stratosphere, which are the lowest two of the five layers of the atmosphere of Earth. The tropopause is a thermodynamic gradient-stratification layer that marks the end of the troposphere, and is approximately 17 kilometres (11 mi) above the equatorial regions, and approximately 9 kilometres (5.6 mi) above the polar regions.

<span class="mw-page-title-main">Atmosphere of Earth</span> Gas layer surrounding Earth

The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth creates pressure, absorbs most meteoroids and ultraviolet solar radiation, warms the surface through heat retention, and reduces temperature extremes between day and night, maintaining conditions allowing life and liquid water to exist on the Earth's surface.

<span class="mw-page-title-main">Wind shear</span> Difference in wind speed or direction over a short distance

Wind shear, sometimes referred to as wind gradient, is a difference in wind speed and/or direction over a relatively short distance in the atmosphere. Atmospheric wind shear is normally described as either vertical or horizontal wind shear. Vertical wind shear is a change in wind speed or direction with a change in altitude. Horizontal wind shear is a change in wind speed with a change in lateral position for a given altitude or height.

In common usage, wind gradient, more specifically wind speed gradient or wind velocity gradient, or alternatively shear wind, is the vertical component of the gradient of the mean horizontal wind speed in the lower atmosphere. It is the rate of increase of wind strength with unit increase in height above ground level. In metric units, it is often measured in units of meters per second of speed, per kilometer of height (m/s/km), which reduces inverse milliseconds (ms−1), a unit also used for shear rate.

<span class="mw-page-title-main">Lee wave</span> Atmospheric stationary oscillations

In meteorology, lee waves are atmospheric stationary waves. The most common form is mountain waves, which are atmospheric internal gravity waves. These were discovered in 1933 by two German glider pilots, Hans Deutschmann and Wolf Hirth, above the Giant Mountains. They are periodic changes of atmospheric pressure, temperature and orthometric height in a current of air caused by vertical displacement, for example orographic lift when the wind blows over a mountain or mountain range. They can also be caused by the surface wind blowing over an escarpment or plateau, or even by upper winds deflected over a thermal updraft or cloud street.

<span class="mw-page-title-main">Planetary boundary layer</span> Lowest part of the atmosphere directly influenced by contact with the planetary surface

In meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. On Earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, and moisture display rapid fluctuations (turbulence) and vertical mixing is strong. Above the PBL is the "free atmosphere", where the wind is approximately geostrophic, while within the PBL the wind is affected by surface drag and turns across the isobars.

<span class="mw-page-title-main">Perlan Project</span> American high altitude research organization

Perlan Project Inc. is a 501(c)(3) not-for-profit aeronautical exploration and atmospheric science research organization that utilizes sailplanes (gliders) designed to fly at extremely high altitudes.

<span class="mw-page-title-main">Polar vortex</span> Persistent cold-core low-pressure area that circles one of the poles

A circumpolar vortex, or simply polar vortex, is a large region of cold, rotating air; polar vortices encircle both of Earth's polar regions. Polar vortices also exist on other rotating, low-obliquity planetary bodies. The term polar vortex can be used to describe two distinct phenomena; the stratospheric polar vortex, and the tropospheric polar vortex. The stratospheric and tropospheric polar vortices both rotate in the direction of the Earth's spin, but they are distinct phenomena that have different sizes, structures, seasonal cycles, and impacts on weather.

<span class="mw-page-title-main">Eruption column</span> A cloud of hot ash and volcanic gases emitted during an explosive volcanic eruption

An eruption column or eruption plume is a cloud of super-heated ash and tephra suspended in gases emitted during an explosive volcanic eruption. The volcanic materials form a vertical column or plume that may rise many kilometers into the air above the vent of the volcano. In the most explosive eruptions, the eruption column may rise over 40 km (25 mi), penetrating the stratosphere. Stratospheric injection of aerosols by volcanoes is a major cause of short-term climate change.

<span class="mw-page-title-main">Thermal wind</span> Vector difference of geostrophic wind movement at high and low altitudes

In atmospheric science, the thermal wind is the vector difference between the geostrophic wind at upper altitudes minus that at lower altitudes in the atmosphere. It is the hypothetical vertical wind shear that would exist if the winds obey geostrophic balance in the horizontal, while pressure obeys hydrostatic balance in the vertical. The combination of these two force balances is called thermal wind balance, a term generalizable also to more complicated horizontal flow balances such as gradient wind balance.

A pilot report or PIREP is a report of actual flight or ground conditions encountered by an aircraft. Reports commonly include information about atmospheric conditions or airport conditions. This information is usually relayed by radio to the nearest ground station, but other options also exist in some regions. The message would then be encoded and relayed to other weather offices and air traffic service units.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

<span class="mw-page-title-main">Coffin corner (aerodynamics)</span> Dangerous condition in aviation

Coffin corner is the region of flight where a fast but subsonic fixed-wing aircraft's stall speed is near the critical Mach number, at a given gross weight and G-force loading. In this region of flight, it is very difficult to keep an airplane in stable flight. Because the stall speed is the minimum speed required to maintain level flight, any reduction in speed will cause the airplane to stall and lose altitude. Because the critical Mach number is the maximum speed at which air can travel over the wings without losing lift due to flow separation and shock waves, any increase in speed will cause the airplane to lose lift, or to pitch heavily nose-down, and lose altitude.

<span class="mw-page-title-main">Atmospheric temperature</span> Physical quantity that expresses hot and cold in the atmosphere

Atmospheric temperature is a measure of temperature at different levels of the Earth's atmosphere. It is governed by many factors, including incoming solar radiation, humidity, and altitude. The abbreviation MAAT is often used for Mean Annual Air Temperature of a geographical location.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

References

  1. Wragg, David W. (1973). A Dictionary of Aviation (first ed.). Osprey. p. 93. ISBN   9780850451634.
  2. Stull, B. R., 1988 An introduction to Boundary Layer Meteorology, Kluwert Academic Publishers 666 pp.
  3. Chambers, E., 1955: Clear air turbulence and civil jet operation. J. Roy. Aeronaut. Soc.,59, 613–628.
  4. Baughman, E. E., Jr., 1946: Turbulence with a stable lapse rate. Bull. Amer. Meteor. Soc.,27, 459–462.
  5. John J. Hicks, Isadore Katz, Claude R. Landry, and Kenneth R. Hardy, "Clear-Air Turbulence: Simultaneous Observations by Radar and Aircraft" Science. 18 August 1967: Vol. 157. no. 3790, pp. 808809
  6. F. J. Duarte, T. S. Taylor, A. B. Clark, and W. E. Davenport, "The N-slit interferometer: an extended configuration", J. Opt.12, 015705 (2010).
  7. Binding, A. A. "Association of clear-air turbulence with 300 mb contour patterns". The Meteorological Magazine94 (1965): 11–19.
  8. Knox, John A. (1997-06-01). "Possible Mechanisms of Clear-Air Turbulence in Strongly Anticyclonic Flows". Monthly Weather Review. 125 (6): 1251–1259. Bibcode:1997MWRv..125.1251K. doi: 10.1175/1520-0493(1997)125<1251:PMOCAT>2.0.CO;2 . ISSN   1520-0493.
  9. Lankford, Terry T. (2001). Controlling Pilot Error:Weather. New York: McGraw-Hill. pp. 49–53. ISBN   978-0-07-137328-9.
  10. "Killer turbulence hits flight". BBC News .
  11. Ross, Alice (1 May 2017). "Severe turbulence on Aeroflot flight to Bangkok leaves 27 people injured". The Guardian . Retrieved 30 June 2018.
  12. Jeong, Andrew (30 August 2023). "11 injured in 'severe turbulence' on Delta flight from Milan to Atlanta". The Washington Post . Retrieved 30 August 2023.