Climate change in Michigan

Last updated

Koppen climate types in Michigan, showing most of the state to be warm-summer humid continental, with some hot-summer humid continental portions. Michigan Koppen.png
Köppen climate types in Michigan, showing most of the state to be warm-summer humid continental, with some hot-summer humid continental portions.

Climate change in Michigan encompasses the effects of climate change, attributed to man-made [1] increases in atmospheric greenhouse gases, in the U.S. state of Michigan.

Contents

The United States Environmental Protection Agency states that "Michigan's climate is changing. Most of the state has warmed two to three degrees (F) in the last century. Severe thunderstorms and tornadoes are becoming more frequent, and ice cover on the Great Lakes is forming later or melting sooner. In the coming decades, the state will have more extremely hot days, which may harm public health in urban areas and corn harvests in rural areas". [2]

People have increased the amount of carbon dioxide in the Earth’s atmosphere by 40 percent since the 1700s. This caused the atmosphere to rise in temperature, which allowed for more evaporation, which called for more rain. Heavy storms have increased in number and now exert 31% more precipitation than they did 50 years ago. The increase in heavy rainfall contributes to mass flooding seen within most of the state, especially in the downstate/Detroit area. Flooding allowed land pollutants, such as E. coli, nitrates, and phosphates, to flow into Michigan’s freshwater sources. In 2014, Toledo had to shut down their water supply because bacteria and algae contaminated their water supply. The rising temperatures have resulted in more and more people experiencing heat-related injuries and illnesses, and in some cases, death. [3] Michigan has the MI Healthy Climate Plan, which plans to reach 100% carbon neutrality by 2050. This plan aims to provide good-paying jobs and a healthier, more sustainable environment for Michiganders and avoid the worst impacts of the climate crisis. [4]

The overall effects are expected to be widespread, mixed, and net-negative. A January 2013 'National Climate Assessment' study on the Great Lakes region, led by University of Michigan scholars, stated that climate change would have mixed but net-negative effects in the region by 2050. Specifically, longer growing seasons as well as higher carbon dioxide levels were predicted to increase crop yield but heat waves, droughts, and floods were also forecast to rise. The report predicted declines in ice cover on the Great Lakes that would lengthen commercial shipping season although the regions would also suffer from invasive species as well as damaging algae blooms. The negative scenario described in the study used modeling with a 3.8 to 4.9 °F (2.1 to 2.7 °C) range for 2000 to 2050 warming versus the 1 °F (0.56 °C) of historical warming for 1950 to 2000. [5]

Heavy precipitation and flooding

Flood damage in Houghton, 2018 Flood damage - Houghton, MI - 2018 (8) (cropped).jpg
Flood damage in Houghton, 2018
Wildfire fighting, Isle Royale, 2021 Firefighter on Fire Line (d08f0a9a-54fc-4979-8a34-d1625b33e72a) (cropped).jpg
Wildfire fighting, Isle Royale, 2021

In the state of Michigan there are over 11,000 lakes that are 5 acres or larger. With this much water in the state, Michigan is more susceptible to flooding.

"Changing the climate is likely to increase the frequency of floods in Michigan. Over the last half century, average annual precipitation in most of the Midwest has increased by 5 to 10 percent. But rainfall during the four wettest days of the year has increased about 35 percent. During the next century, spring rainfall and annual precipitation are likely to increase, and severe rainstorms are likely to intensify. Each of these factors will tend to further increase the risk of flooding". [6]

Wildfire smoke covering Detroit, 2023 wildfire season Smoky Detroit Skyline 2023-06-07 1928.jpg
Wildfire smoke covering Detroit, 2023 wildfire season
Flooding in Grand Rapids, 2013 Fish Ladder Grand Rapids 2013 flood.JPG
Flooding in Grand Rapids, 2013

Michigan recorded an annual average of two or more inches of rain during a period of just over one day. This is significant as it is more rain days per year than when record-keeping began in 1900. [7] Climate change could potentially increase the occurrence of 100-year floods. This is significant because 100-year floods are major floods that have a 1 percent chance of occurring in any given year. Michigan's Upper and Lower Peninsula could see an increase of 25 to 500 percent increase of 100- year floods from 2040 to 2060 compared to those seen from 1950 to 2000. [8]

Filling sandbags, 2013 Grand Rapids floods 2013 Grand Rapids flood sandbags.jpg
Filling sandbags, 2013 Grand Rapids floods

2.6 million people in Michigan get their drinking water from private wells located at their household. These types of wells are not regulated to maximum standards. Extreme rainfall can affect these private wells, which threatens the safety of many individuals’ drinking water. [2] When private wells experience heavy rain, they can trigger extensive runoff. Extensive runoff can lead to bacterial contamination which are not normally treated. [9] It is generally the responsibility of the home owner to be aware of contamination. With the potential of more floods, it is posing a threat to Michigan's agricultural industry resulting in loss of crop production and delaying when farmers can plant their fields. [7]

Great Lakes

Solar arrays, Ann Arbor Red-tailed Hawk by the solar arrays.jpg
Solar arrays, Ann Arbor
Wildfire, Huron-Manistee National Forest, 2010 Fire in Huron-Manistee National Forest.jpg
Wildfire, Huron-Manistee National Forest, 2010

"Changing the climate is likely to harm water quality in Lake Erie and Lake Michigan. Warmer water tends to cause more algal blooms, which can be unsightly, harm fish, and degrade water quality. During August 2014, an algal bloom in Lake Erie prompted the Monroe County Health Department to advise residents in four townships to avoid using tap water for cooking and drinking. Severe storms increase the amount of pollutants that run off from land to water, so the risk of algal blooms will be greater if storms become more severe. Severe rainstorms can also cause sewers to overflow into lakes and rivers, which can threaten beach safety and drinking water supplies. For example, heavy rains in August 2014 led to nearly 10 billion gallons of sewer overflows in southeastern Michigan, much of which ended up in Lake St. Clair and eventually Lake Erie. More severe rainstorms could also cause sewers in Milwaukee and Chicago to overflow into Lake Michigan more often, which could pollute beaches in Michigan". [6]

"One advantage of climate change is that warmer winters reduce the number of days that ice prevents navigation. Between 1994 and 2011, the decline in ice cover lengthened the shipping season on the Great Lakes by eight days. The lakes are likely to warm another 3° to 7°F in the next 70 years, which will further extend the shipping season". [6]

Winter recreation

"Warmer winters are likely to shorten the season for recreational activities like ice fishing, snowmobiling, snowboarding, and skiing, which could harm the local economies that depend on them. Small lakes are freezing later and thawing earlier than a century ago, which shortens the season for ice fishing and ice skating and can cause those to become impossible or unsafe due to thin and unreliable ice coverage upon lakes especially in the extreme south of the state. Since the early 1970s, winter ice coverage in the Great Lakes has decreased by 63 percent. Warmer temperatures are likely to shorten the season when the ground is covered by snow, and thereby shorten the season for activities that take place on snow. Nevertheless, annual snowfall has increased in much of the Great Lakes region, which could benefit winter recreation at certain times and locations". [6]

Ecosystems

"The ranges of plants and animals are likely to as the climate changes. For example, warmer weather could change the composition of Michigan’s forests. As the climate warms, the population of paper birch, quaking aspen, balsam fir, and black spruce may decline in the Upper Peninsula and northern Lower Peninsula, while oak, hickory, and pine trees may become more numerous. Climate change will also transform fish habitat. Rising water temperatures will increase the available habitat for warmwater fish such as bass, while shrinking the available habitat for coldwater fish such as trout. Declining ice cover and increasingly severe storms would harm both types of fish habitat through erosion and flooding. Warming could also harm ecosystems by changing the timing of natural processes such as migration, reproduction, and flower blooming". [6]

"Migratory birds are arriving in the Midwest earlier in spring today than 40 years ago. Along with range shifts, changes in timing can disrupt the intricate web of relationships between animals and their food sources and between plants and pollinators. Because not all species adjust to climate change in the same way, the food that one species eats may no longer be available when that species needs it (for example, when migrating birds arrive). Some types of animals may no longer be able to find enough food". [6]

Agriculture

"Changing the climate will have both beneficial and harmful effects on farming. Higher concentrations of atmospheric carbon dioxide and longer frost-free growing seasons would increase yields of wheat during an average year. But increasingly hot summers are likely to reduce yields of corn and possibly soybeans. Seventy years from now, Michigan’s Lower Peninsula is likely to have 5 to 15 more days per year with temperatures above 95°F than it has today. More severe droughts or floods would also hurt crop yields". [6]

Warmer winters imply fewer blizzards that blanket the soil and protect soil moisture and, especially for the later ones, yield moisture timed well for germinating crops. This will be especially so in the southern part of the state that will be the first part of the state to enter the Cfa (humid subtropical climate) zone, which may happen by late in the 21st century. Winter rains will largely replace snow and typically flow away through rivers instead of recharging the groundwater.

See also

Related Research Articles

<span class="mw-page-title-main">Climate change in West Virginia</span> Climate change in the US state of West Virginia

Climate change in West Virginia is an ongoing concern. Most of the state has warmed one-half to one degree Fahrenheit (0.28–0.56 °C) in the last century, and heavy rainstorms are becoming more frequent. In the coming decades, a changing climate is likely to increase flooding, harm ecosystems, increase some health problems, and possibly threaten some recreational activities. The average temperature in Charleston, West Virginia, has increased 1.1 °F (0.61 °C) over the last century, and precipitation has increased by up to 10% in many parts of the state.

<span class="mw-page-title-main">Climate change in Georgia (U.S. state)</span> Climate change in the US state of Georgia

Climate change in Georgia encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Georgia.

<span class="mw-page-title-main">Climate change in Indiana</span> Climate change in the US state of Indiana

Climate change in Indiana encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Indiana.

<span class="mw-page-title-main">Climate change in Iowa</span> Climate change in the US state of Iowa

Climate change in Iowa encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Iowa.

<span class="mw-page-title-main">Climate change in Kansas</span> Climate change in the US state of Kansas

Climate change in Kansas encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Kansas.

<span class="mw-page-title-main">Climate change in Kentucky</span> Climate change in the US state of Kentucky

Climate change in Kentucky encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Kentucky.

<span class="mw-page-title-main">Climate change in Louisiana</span> Climate change in the US state of Louisiana

Climate change in Louisiana encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Louisiana.

<span class="mw-page-title-main">Climate change in Minnesota</span> Climate change in the US state of Minnesota

Climate change in Minnesota encompasses the effects of climate change, attributed to human-caused increases in atmospheric carbon dioxide, in the U.S. state of Minnesota.

<span class="mw-page-title-main">Climate change in Mississippi</span> Climate change in the US state of Mississippi

Climate change in Mississippi encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Mississippi.

<span class="mw-page-title-main">Climate change in Missouri</span> Climate change in the US state of Missouri

Climate change in Missouri encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Missouri.

<span class="mw-page-title-main">Climate change in Nebraska</span> Climate change in the US state of Nebraska

Climate change in Nebraska encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Nebraska.

<span class="mw-page-title-main">Climate change in North Dakota</span> Climate change in the US state of North Dakota

Climate change in North Dakota encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of North Dakota.

<span class="mw-page-title-main">Climate change in the United States Virgin Islands</span> Impacts and responses of the US Virgin Islands related to climate change

Climate change in the United States Virgin Islands encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. territory of the United States Virgin Islands. The United States Environmental Protection Agency (EPA) has noted a variety of expected consequences of this phenomenon.

<span class="mw-page-title-main">Climate change in South Carolina</span> Climate change in the US state of South Carolina

Climate change in South Carolina encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of South Carolina.

<span class="mw-page-title-main">Climate change in Tennessee</span> Climate change in the US state of Tennessee

Climate change in Tennessee encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Tennessee.

<span class="mw-page-title-main">Climate change in Virginia</span> Climate change in the US state of Virginia

Climate change in Virginia encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Virginia.

<span class="mw-page-title-main">Climate change in Wisconsin</span> Climate change in the US state of Wisconsin

Climate change in Wisconsin encompasses the effects of climate change attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Wisconsin including the environmental, economic, and social impacts.

<span class="mw-page-title-main">Climate change in Ohio</span> Climate change in the US state of Ohio

Climate change in Ohio is of concern due to its impacts on the environment, people, and economy of Ohio. The annual mean temperature in Ohio has increased by about 1.2 °F (0.67 °C) since 1895. According to the United States Environmental Protection Agency, "All regions of Ohio have warmed."

<span class="mw-page-title-main">Climate change in South Dakota</span> Climate change in the US state of South Dakota

Climate change in South Dakota encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of South Dakota.

<span class="mw-page-title-main">Climate change in Pennsylvania</span> Climate change in the US state of Pennsylvania

Climate change in Pennsylvania encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Pennsylvania.

References

  1. https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-3/ [ bare URL ]
  2. 1 2 Office of Drinking Water & Municipal Assistance. "Groundwater Statistics" (PDF). Michigan Department of Environmental Quality. Archived from the original (PDF) on September 20, 2017.
  3. "Climate Change and Michigan". miclimateaction.org. Retrieved December 10, 2023.
  4. "MI Healthy Climate Plan". mimichigan.gov. Retrieved December 10, 2023.
  5. University of Michigan (January 18, 2013). "Heat Waves, Storms, Flooding: Climate Change to Profoundly Affect U.S. Midwest in Coming Decades". Science Daily. Retrieved August 26, 2013.
  6. 1 2 3 4 5 6 7 "What Climate Change Means for Michigan" (PDF). United States Environmental Protection Agency. August 2016. EPA 430-F-16-024.
  7. 1 2 Frankson, Rebekah; Kunkel, Kenneth E.; Champion, Sarah; Runkle, Jennifer (2017). "Michigan State Climate Summary". State Climate Summaries (NOAA Technical Report). National Oceanographic and Atmospheric Administration National Centers for Environmental Information. NESDIS 149-MI. Archived from the original on June 19, 2020. Retrieved April 28, 2020.
  8. Wobus, Cameron; Gutmann, Ethan; Jones, Russell; Rissing, Matthew; Mizukami, Naoki; Lorie, Mark; Mahoney, Hardee; Wood, Andrew W.; Mills, David; Martinich, Jeremy (December 8, 2017). "Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States". Natural Hazards and Earth System Sciences. Vol. 17, no. 12. pp. 2199–2211. Bibcode:2017NHESS..17.2199W. doi: 10.5194/nhess-17-2199-2017 . ISSN   1561-8633.
  9. United States Environmental Protection Agency (May 6, 2015). "Potential Well Water Contaminants and Their Impacts". United States Environmental Protection Agency. Retrieved April 28, 2020.

Further reading