Co-Hopfian group

Last updated

In the mathematical subject of group theory, a co-Hopfian group is a group that is not isomorphic to any of its proper subgroups. The notion is dual to that of a Hopfian group, named after Heinz Hopf. [1]

Contents

Formal definition

A group G is called co-Hopfian if whenever is an injective group homomorphism then is surjective, that is . [2]

Examples and non-examples

See also

Related Research Articles

In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism, every characteristic subgroup is normal; though the converse is not guaranteed. Examples of characteristic subgroups include the commutator subgroup and the center of a group.

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

<span class="mw-page-title-main">Group (mathematics)</span> Set with associative invertible operation

In mathematics, a group is a set with an operation that satisfies the following constraints: the operation is associative and has an identity element, and every element of the set has an inverse element.

In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups.

<span class="mw-page-title-main">Semidirect product</span> Operation in group theory

In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product:

In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.

In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type.

In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group GH. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from GH to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group.

In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N, i.e. φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen.

In mathematics, Hurwitz's automorphisms theorem bounds the order of the group of automorphisms, via orientation-preserving conformal mappings, of a compact Riemann surface of genus g > 1, stating that the number of such automorphisms cannot exceed 84(g − 1). A group for which the maximum is achieved is called a Hurwitz group, and the corresponding Riemann surface a Hurwitz surface. Because compact Riemann surfaces are synonymous with non-singular complex projective algebraic curves, a Hurwitz surface can also be called a Hurwitz curve. The theorem is named after Adolf Hurwitz, who proved it in (Hurwitz 1893).

In additive combinatorics, a discipline within mathematics, Freiman's theorem is a central result which indicates the approximate structure of sets whose sumset is small. It roughly states that if is small, then can be contained in a small generalized arithmetic progression.

In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.

In field theory, a simple extension is a field extension that is generated by the adjunction of a single element, called a primitive element. Simple extensions are well understood and can be completely classified.

<span class="mw-page-title-main">Quasi-isometry</span> Function between two metric spaces that only respects their large-scale geometry

In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces.

Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.

In mathematics, and more precisely in topology, the mapping class group of a surface, sometimes called the modular group or Teichmüller modular group, is the group of homeomorphisms of the surface viewed up to continuous deformation. It is of fundamental importance for the study of 3-manifolds via their embedded surfaces and is also studied in algebraic geometry in relation to moduli problems for curves.

In the mathematical subject of group theory, a one-relator group is a group given by a group presentation with a single defining relation. One-relator groups play an important role in geometric group theory by providing many explicit examples of finitely presented groups.

In the mathematical subject geometric group theory, a fully irreducible automorphism of the free group Fn is an element of Out(Fn) which has no periodic conjugacy classes of proper free factors in Fn. Fully irreducible automorphisms are also referred to as "irreducible with irreducible powers" or "iwip" automorphisms. The notion of being fully irreducible provides a key Out(Fn) counterpart of the notion of a pseudo-Anosov element of the mapping class group of a finite type surface. Fully irreducibles play an important role in the study of structural properties of individual elements and of subgroups of Out(Fn).

In mathematics, the free factor complex is a free group counterpart of the notion of the curve complex of a finite type surface. The free factor complex was originally introduced in a 1998 paper of Allen Hatcher and Karen Vogtmann. Like the curve complex, the free factor complex is known to be Gromov-hyperbolic. The free factor complex plays a significant role in the study of large-scale geometry of .

In mathematics, a Cannon–Thurston map is any of a number of continuous group-equivariant maps between the boundaries of two hyperbolic metric spaces extending a discrete isometric actions of the group on those spaces.

References

  1. Wilhelm Magnus, Abraham Karrass, Donald Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, Reprint of the 1976 second edition, Dover Publications, Inc., Mineola, NY, 2004. ISBN   0-486-43830-9
  2. 1 2 3 4 5 6 7 P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. ISBN   0-226-31719-6; p. 58
  3. 1 2 3 Yves Cornulier, Gradings on Lie algebras, systolic growth, and cohopfian properties of nilpotent groups. Bulletin de la Société Mathématique de France 144 (2016), no. 4, pp. 693–744
  4. 1 2 Volodymyr Nekrashevych, and Gábor Pete, Scale-invariant groups. Groups, Geometry, and Dynamics 5 (2011), no. 1, pp. 139–167
  5. 1 2 Igor Belegradek, On co-Hopfian nilpotent groups. Bulletin of the London Mathematical Society 35 (2003), no. 6, pp. 805–811
  6. Shi Cheng Wang, and Ying Qing Wu, Covering invariants and co-Hopficity of 3-manifold groups. Proceedings of the London Mathematical Society 68 (1994), no. 1, pp. 203–224
  7. Gopal Prasad Discrete subgroups isomorphic to lattices in semisimple Lie groups. American Journal of Mathematics 98 (1976), no. 1, 241–261
  8. Zlil Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups. II. Geometric and Functional Analysis 7 (1997), no. 3, pp. 561–593
  9. I. Belegradek, On Mostow rigidity for variable negative curvature. Topology 41 (2002), no. 2, pp. 341–361
  10. Nikolai Ivanov and John McCarthy, On injective homomorphisms between Teichmüller modular groups. I. Inventiones Mathematicae 135 (1999), no. 2, pp. 425–486
  11. Benson Farb and Michael Handel, Commensurations of Out(Fn), Publications Mathématiques de l'IHÉS 105 (2007), pp. 1–48
  12. Thomas Delzant and Leonid Potyagailo, Endomorphisms of Kleinian groups. Geometric and Functional Analysis 13 (2003), no. 2, pp. 396–436
  13. Montserrat Casals-Ruiz, Embeddability and quasi-isometric classification of partially commutative groups. Algebraic and Geometric Topology 16 (2016), no. 1, 597–620
  14. Cornelia Druţu and Mark Sapir, Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups. Advances in Mathematics 217 (2008), no. 3, pp. 1313–1367
  15. Igor Lysënok, A set of defining relations for the Grigorchuk group.(in Russian) Matematicheskie Zametki 38 (1985), no. 4, 503–516
  16. Bronlyn Wassink, Subgroups of R. Thompson's group F that are isomorphic to F. Groups, Complexity, Cryptology 3 (2011), no. 2, 239–256
  17. Yann Ollivier, and Daniel Wise, Kazhdan groups with infinite outer automorphism group. Transactions of the American Mathematical Society 359 (2007), no. 5, pp. 1959–1976
  18. Charles F. Miller, and Paul Schupp, Embeddings into Hopfian groups. Journal of Algebra 17 (1971), pp. 171–176
  19. Martin Bridson, Daniel Groves, Jonathan Hillman, Gaven Martin, Cofinitely Hopfian groups, open mappings and knot complements. Groups, Geometry, and Dynamics 4 (2010), no. 4, pp. 693–707
  20. Ilya Kapovich, and Anton Lukyanenko, Quasi-isometric co-Hopficity of non-uniform lattices in rank-one semi-simple Lie groups. Conformal Geometry and Dynamics 16 (2012), pp. 269–282
  21. Sergei Merenkov, A Sierpiński carpet with the co-Hopfian property. Inventiones Mathematicae 180 (2010), no. 2, pp. 361–388

Further reading