The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject.(May 2012) |
Coastal hazards are physical phenomena that expose a coastal area to the risk of property damage, loss of life, and environmental degradation. Rapid-onset hazards last a few minutes to several days and encompass significant cyclones accompanied by high-speed winds, waves, and surges or tsunamis created by submarine (undersea) earthquakes and landslides. Slow-onset hazards, such as erosion and gradual inundation, develop incrementally over extended periods. [1]
Since early civilization, coastal areas have attracted human settlement due to their abundant marine resources, fertile agricultural land, and opportunities for trade and transport. This trend has led to high population densities and significant development in many coastal regions, continuing into the 21st century. Currently, about 1.2 billion people live in coastal areas globally, with this number predicted to increase to 1.8–5.2 billion by the 2080s due to population growth and coastal migration. [2] This population growth has been accompanied by substantial investments in infrastructure and the built environment.
However, coastal environments present significant challenges to human habitation. Coastlines are highly dynamic natural systems that interact with terrestrial, marine, and atmospheric processes, continuously changing in response to these interactions. Over the years, human society has often failed to recognize the hazards associated with these dynamics, [3] leading to major disasters and societal disruption. Coastal development frequently occurs with little consideration for these hazards, despite the likelihood of climate change exacerbating them. [4] Additionally, societal activities in coastal areas can disrupt the natural balance of coastal systems, threatening the human livelihoods that depend on them.
Coastal hazard management has thus become a crucial aspect of coastal planning to enhance society's resilience to coastal hazards. Management options include complex engineering structures, soft protection measures, various accommodation approaches, and managed retreat from the coastline. Effective coastal hazard management also requires early warning systems and emergency management plans to address sudden and potentially catastrophic events, such as major flooding. The devastation caused by Hurricane Katrina in the southern United States in 2005 and cyclone Nargis in Myanmar in 2008 underscores the importance of timely and effective coastal hazard management.
There are many different types of environments along the coasts of the United States with very diverse features that affect, influence, and mold the near-shore processes that are involved. Understanding these ecosystems and environments can further advance the mitigating techniques and policy-making efforts against natural and man-made coastal hazards in these vulnerable areas. The five most common types of coastal zones range from the northern ice-pushing, mountainous coastline of Alaska and Maine, the barrier island coasts facing the Atlantic, the steep, cliff-back headlands along the Pacific coast, the marginal-sea type coastline of the Gulf region, and the coral reef coasts bordering Southern Florida and Hawaii. [5]
Ice-pushing/mountainous coastline
These coastal regions along the northernmost part of the nation were affected predominantly by continuous tectonic activity, forming a very long, irregular, ridged, steep, and mostly mountainous coastline. These environments are heavily occupied with permafrost and glaciers, which are the two major conditions affecting Alaska's Coastal Development. [6]
Barrier island coastline
Barrier islands are a landform system that consists of fairly narrow strips of sand running parallel to the mainland and play a significant role in mitigating storm surges and ocean swells as natural storm events occur. The morphology of the various types and sizes of barrier islands depends on wave energy, tidal range, basement controls, and sea level trends. The islands create multiple unique environments of wetland systems including marshes, estuaries, and lagoons. [7]
Steep, cliff-backing abrasion coastline
The coastline along the western part of the nation consists of very steep cliffs and rock formations generally with vegetative slopes descending down with a fringing beach below. The various sedimentary, metamorphic, and volcanic rock formations assembled along a tectonically disturbed environment, all with altering resistances running perpendicular, cause the ridged, extensive stretch of uplifted cliffs that form the peninsulas, lagoons, and valleys. [8]
Marginal-sea type coastline
The southern banks of the United States border the Gulf of Mexico, intersecting numerous rivers, forming many inlets bays, and lagoons along its coast, consisting of vast areas of marsh and wetlands. This region of landform is prone to natural disasters yet highly and continuously developed, with man-made structures used to address water flow and control. [6]
Coral reef coastline
Coral reefs are located off the shores of southern Florida and Hawaii, consisting of rough and complex natural structures along the bottom of the ocean floor with extremely diverse ecosystems that absorb up to ninety percent of the energy dissipated from wind-generated waves. This process is a significant buffer for the inner-lying coastlines, naturally protecting and minimizing the impact of storm surges and direct wave damage. Because of the highly diverse ecosystems, these coral reefs not only provide shoreline protection but also deliver an abundance of services to fisheries and tourism, increasing their economic value. [9]
This section's tone or style may not reflect the encyclopedic tone used on Wikipedia.(June 2020) |
This section is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic.(June 2020) |
Natural disasters vs. human disasters
The population that lives along or near coastlines is extremely vulnerable to coastal hazards. There are numerous issues that can threaten coastal ecosystems, with two main categories that these hazards can be placed under: Natural disasters and human disasters. Both of these issues cause great damage to coastlines and their communities, and discussion is still ongoing regarding what standards or responses need to be met to allow communities to continue living along coastlines while keeping them safe and preventing further coastal erosion. Natural disasters are events that are out of human control and are usually caused by weather. Such disasters include but are not limited to; storms, tsunamis, typhoons, flooding, tides, waterspouts, nor'easters, and storm surges. Human disasters are disasters that occur partially or fully due to human behavior, such as pollution, trawling, and human development.
Hazardous events in coastal areas affect millions of people. Around ten million people globally are affected by coastal problems yearly, with most of these due to certain natural hazards like coastal flooding with storm surges and typhoons. [10] A major problem related to coastal regions deals with how the global environment is changing and the unique implications of this for coastal areas.
Storms, flooding, and erosion
Storms are one of the major hazards that are associated with coastal regions. Storms, flooding, and erosion are closely associated and can happen simultaneously. Tropical storms or hurricanes especially can devastate coastal regions. For example, in 1992, Hurricane Andrew caused extreme damage to parts of the U.S. state of Florida. It was a category five hurricane that caused $26.5 billion in damages and led to 23 fatalities. [10] Hurricane Katrina also caused havoc along the southern coast of the U.S. and is often cited as an example of the extreme force a hurricane can do in certain regions. [11] The South Indian Chennai Floods of 2015, which affected many people, is an example of flooding due to cyclones. People across the whole state of Tamil Nadu and parts of Andhra Pradesh were affected by these floods. There was a loss of Rs 14,000 crore and over 500 lives. [12] [13]
In almost all cases, storms are the major culprit that causes flooding and erosion. Flash flooding is caused by massive amounts of rainfall during storms flowing down into an area over a short period of time. Storm surges, which are closely related to tropical storms, occur when wind collects and pushes water towards low pressure or inland, with this water sometimes rising rapidly. [14] The amount of sea level rise or fall from a storm surge depends greatly on the amount and duration of wind and water in a specific location. During high tides, these surges can have an even greater effect on the coast.
Almost all storms with high wind and water cause erosion along the coast. Erosion can occur along shore currents due to tides, sea level rise and fall, and high winds. Larger amounts of erosion cause the coastline to degrade at a faster rate and can destroy areas of habitation, leaving less land to develop or preserve. Coastal erosion has been increasing over the past few years, and it is still on the rise, making it a major coastline hazard. In the United States, 45 percent of the coastline is along the Atlantic or Gulf coast, and the erosion rate per year along the Gulf coast is currently at six feet a year. The average rate of erosion along the Atlantic is around two to three feet a year. Even with these findings, erosion rates in specific locations vary because of various environmental factors such as significant storms that can cause major erosion upwards of 100 feet or more in only one day. [15]
Pollution, trawling, and human development
Pollution, trawling, and human development are major human disasters that affect coastal regions. There are two main categories related to pollution, point source pollution, and nonpoint source pollution. Point source pollution is when there is an exact location such as a pipeline or a body of water that leads into the rivers and oceans. Known dumping into the ocean is also another point source of pollution. Nonpoint source pollution pertains more to fertilizer runoff, and industrial waste. Examples of pollution that affect the coastal regions include fertilizer runoff, oil spills, and dumping of hazardous materials into the oceans. Other human actions that damage coastlines are waste discharge, fishing, dredging, mining, and drilling. [16] Oil spills are one of the most hazardous dangers to coastal communities. They are hard to contain, difficult to clean up and create widespread devastation to wildlife, water, and especially the coastline near spills. A recent spill that drew attention to the issue of oil spilling was the Deepwater Horizon oil spill in the Gulf of Mexico off the Louisiana coast.
Trawling hurts the normal ecosystems in the water around the coastline, including those of the ocean floor. This practice is when a giant net is dragged across the ocean floor, catching and even destroying anything in its path. Human development is one of the major problems when facing coastal hazards. The overall construction of buildings and houses on the coastline can remove natural barriers which handle the fluctuation in water and sea level rise. Building houses in pre-flood areas or high-risk areas that are extremely vulnerable to flooding are major concerns towards human development in coastal regions. Having houses and buildings in areas that are known to have powerful storms can pose a risk to the communities living there, such as on barrier islands, where land is at high risk for erosion. As a result, an increasing number of houses today are being taken by the ocean.
Coastal hazards and climate change
The predicted trajectory of climate change adds an extra risk factor to human settlement in coastal areas. Whereas the natural dynamics that shape our coastlines have been relatively stable and predictable over the last centuries, much more rapid change is now expected in processes such as sea level rise, ocean temperature and acidity, tropical storm intensity, and precipitation/runoff patterns. [17] The world's coastlines will respond to these changes in different ways and at different pace depending on their bio-geophysical characteristics, and as such, past coastal trends often cannot be directly projected into the future. Instead, it is necessary to consider how different coastal environments will respond to the predicted climate change and take the expected future hazards into account in the coastal planning processes.
National Flood Insurance Program
The National Flood Insurance Program or NFIP was instituted in 1968 and offers homeowners in qualifying communities an opportunity to rebuild and recover after flooding events following the decision by insurance companies to discontinue providing flood insurance. This decision was made on behalf of the private insurers after continually high and widespread flood losses. The goals of this program are to not only better protect individuals from flood, but to reduce property losses, and reduce the total amount disbursed for flood losses by the government. Only communities which have adopted and implemented mitigation policies that are compliant with or exceed federal regulations. The regulatory policies reduce risk to life and property located within floodplains. The NFIP also comprehensively mapped domestic floodplains increasing public awareness of risk. The majority of structures were constructed after the mapping was completed and risk could be assessed. To reduce the cost to these owners, which constitute roughly 25% of the total policies the rates for insurance are subsidized. [18]
Coastal States Organization
The Coastal States Organization or COS was established in 1970 to represent 35 U.S. sub-federal governments on issues of coastal policies. CSO lobbies Congress on issues pertaining to Coastal Policy allowing states input on federal policy decisions. Funding, support, water quality, coastal hazards, and coastal zone management are the primary issues COS promotes. The strategic goals of COS are to provide information and assistance to members, evaluate and manage coastal needs, and secure long-term funding for member states initiatives. [19]
Coastal Zone Management Act
In 1972 the Coastal Zone Management Act or CZMA works to streamline the policies that states create to a minimum federal standard for environmental protection. CZMA establishes the national policy for the development and implementation of regulatory programs for coastal land usage, which is supposed to be reflected in state legislation such as CAMA. CZMA also provides minimum building requirements to make the insurance provided through the NFIP less expensive for the government to operate by mitigating losses. Congress found that it was necessary to establish the minimum that programs should provide for. Each coastal state is required to have a program with 7 distinct parts: identifying land uses, identifying critical coastal areas, management measures, technical assistance, public participation, administrative coordination, and state coastal zone boundary modification. [20] [21]
The Coastal Area Management Act
The Coastal Area Management Act or CAMA is a policy that was implemented by the state of North Carolina in 1974 to work in tandem with the CZMA. It creates a cooperative program between the state and local governments. The State government operates in an advisory capacity and reviews decisions made by local government planners. The goal of this legislation was to create a management system capable of preserving the coastal environment, ensure the preservation of land and water resources, balance the use of coastal resources, and establish guidelines and standards for conservation, economic development, tourism, transportation, and the protection of common law. [22]
-- Management and planning --
Due to the increasing urbanization along the coastlines, planning and management are essential to protecting the ecosystems and environment from depleting. Coastal management is becoming implemented more because of the movement of people to the shore and the hazards that come with the territory. Some of the hazards include the movement of barrier islands, sea level rise, hurricanes, nor'easters, earthquakes, flooding, erosion, pollution and human development along the coast. The Coastal Zone Management Act (CZMA) was created in 1972 because of the continued growth along the coast, this act introduced better management practices such as integrated coastal zone management, adaptive management and the use mitigation strategies when planning. According to the Coastal Zone Management Act, the objectives are to remain balanced to "preserve, protect, develop, and where possible, to restore or enhance the resources of the nation's coastal zone". [23] The development of the land can strongly affect the sea, [24] for example, the engineering of structures versus non-structures and the effects of erosion along the shore.
Integrated coastal zone management
Integrated coastal zone management means the integration of all aspects of the coastal zone; this includes environmentally, socially, culturally politically and economically to meet a sustainable balance all around. Sustainability is aimed at ensuring protection for the environment and human health. Coastal zones are fragile and do not do well with change, so it is important to acquire sustainable development. The integration from all views will entitle a holistic view for the best implementation and management of that country, region, and local scales. The five types of integration [25] include integration among sectors, integration between land and water elements of the coastal zone, integration amount levels of government, integration between nations and integration among disciplines are all essential to meet the needs for implementation. Management practices include
These four management practices should be based on a bottom-up approach, meaning the approach starts from a local level which is more intimate to the specific environment of that area. After assessment from the local level, the state and federal input can be implemented. The bottom-up approach is key for protecting the local environments because there is a diversity of environments that have specific needs all over the world.
Adaptive management
Adaptive management is another practice of development adaptation to the environment. Resources are the major factor when managing adaptively to a certain environment to accommodate all the needs of development and ecosystems. Strategies used must be flexible by either passive or active adaptive management include these key features: [27]
To achieve adaptive management is testing the assumptions to achieve a desired outcome, such as trial and error, find the best-known strategy then monitoring it to adapt to the environment, and learning the outcomes of success and failures of a project.
Mitigation
The purpose of mitigation is not only to minimize the loss of property damage but minimize environmental damages due to development. To avoid impacts by not taking or limiting actions, to reduce or rectify impacts by rehabilitation or restoring the affected environments or instituting long-term maintenance operations, and compensating for impacts by replacing or providing substitute environments for resources [28] Structural mitigation is the current solution to eroding beaches and movement of sand is the use of engineered structures along the coast have been short-lived and are only an illusion of safety to the public that result in long term damage of the coastline. Structural management deals with the use of the following: groins which are man-made solutions to longshore current movements up and down the coast. The use of groins is efficient to some extent yet causes erosion and sand build-up further down the beaches. Bulkheads are man-made structures that help protect the homes built along the coast and other bodies of water that actually induce erosion in the long run. Jetties are structures built to protect sand movement into the inlets where boats for fishing and recreation move through. The use of nonstructural mitigation is the practice of using organic and soft structures for solutions to protect against coastal hazards. These include artificial dunes, which are used to create dunes that have been either developed on or eroded. There need to be at least two lines of dunes before any development can occur. Beach Nourishment is a major source of nonstructural mitigation to ensure that beaches are present for the communities and for the protection of the coastline. Vegetation is a key factor when protecting from erosion, specifically for to help stabilize dune erosion.
The coast, also known as the coastline, shoreline or seashore, is defined as the area where land meets the ocean, or as a line that forms the boundary between the land and the coastline. Shores are influenced by the topography of the surrounding landscape, as well as by water induced erosion, such as waves. The geological composition of rock and soil dictates the type of shore which is created. The Earth has around 620,000 kilometres (390,000 mi) of coastline. Coasts are important zones in natural ecosystems, often home to a wide range of biodiversity. On land, they harbor important ecosystems such as freshwater or estuarine wetlands, which are important for bird populations and other terrestrial animals. In wave-protected areas they harbor saltmarshes, mangroves or seagrasses, all of which can provide nursery habitat for finfish, shellfish, and other aquatic species. Rocky shores are usually found along exposed coasts and provide habitat for a wide range of sessile animals and various kinds of seaweeds. In physical oceanography, a shore is the wider fringe that is geologically modified by the action of the body of water past and present, while the beach is at the edge of the shore, representing the intertidal zone where there is one. Along tropical coasts with clear, nutrient-poor water, coral reefs can often be found between depths of 1–50 meters.
The Gulf Coast of the United States, also known as the Gulf South or the South Coast, is the coastline along the Southern United States where they meet the Gulf of Mexico. The coastal states that have a shoreline on the Gulf of Mexico are Texas, Louisiana, Mississippi, Alabama, and Florida, and these are known as the Gulf States.
A natural disaster is the highly harmful impact on a society or community following a natural hazard event. Examples of natural hazard events include floods, droughts, earthquakes, tropical cyclones, volcanic activity, wildfires. A natural disaster can cause loss of life or damage property, and typically leaves economic damage in its wake. The severity of the damage depends on the population's disaster preparedness and on the existing infrastructure. Scholars have been saying that the term natural disaster is unsuitable and should be abandoned. Instead, the simpler term disaster could be used, while also specifying the category of hazard. A disaster is a result of a natural or human-made hazard impacting a vulnerable community. It is the combination of the hazard along with exposure of a vulnerable society that results in a disaster.
Coastal erosion is the loss or displacement of land, or the long-term removal of sediment and rocks along the coastline due to the action of waves, currents, tides, wind-driven water, waterborne ice, or other impacts of storms. The landward retreat of the shoreline can be measured and described over a temporal scale of tides, seasons, and other short-term cyclic processes. Coastal erosion may be caused by hydraulic action, abrasion, impact and corrosion by wind and water, and other forces, natural or unnatural.
A storm surge, storm flood, tidal surge, or storm tide is a coastal flood or tsunami-like phenomenon of rising water commonly associated with low-pressure weather systems, such as cyclones. It is measured as the rise in water level above the normal tidal level, and does not include waves.
A seawall is a form of coastal defense constructed where the sea, and associated coastal processes, impact directly upon the landforms of the coast. The purpose of a seawall is to protect areas of human habitation, conservation, and leisure activities from the action of tides, waves, or tsunamis. As a seawall is a static feature, it will conflict with the dynamic nature of the coast and impede the exchange of sediment between land and sea.
Coastal management is defence against flooding and erosion, and techniques that stop erosion to claim lands. Protection against rising sea levels in the 21st century is crucial, as sea level rise accelerates due to climate change. Changes in sea level damage beaches and coastal systems are expected to rise at an increasing rate, causing coastal sediments to be disturbed by tidal energy.
Integrated coastal zone management (ICZM), integrated coastal management (ICM), or integrated coastal planning is a coastal management process for the management of the coast using an integrated approach, regarding all aspects of the coastal zone, including geographical and political boundaries, in an attempt to achieve sustainability. This concept was born in 1992 during the Earth Summit of Rio de Janeiro. The specifics regarding ICZM is set out in the proceedings of the summit within Agenda 21, Chapter 17.
Marine ecosystems are the largest of Earth's aquatic ecosystems and exist in waters that have a high salt content. These systems contrast with freshwater ecosystems, which have a lower salt content. Marine waters cover more than 70% of the surface of the Earth and account for more than 97% of Earth's water supply and 90% of habitable space on Earth. Seawater has an average salinity of 35 parts per thousand of water. Actual salinity varies among different marine ecosystems. Marine ecosystems can be divided into many zones depending upon water depth and shoreline features. The oceanic zone is the vast open part of the ocean where animals such as whales, sharks, and tuna live. The benthic zone consists of substrates below water where many invertebrates live. The intertidal zone is the area between high and low tides. Other near-shore (neritic) zones can include mudflats, seagrass meadows, mangroves, rocky intertidal systems, salt marshes, coral reefs, lagoons. In the deep water, hydrothermal vents may occur where chemosynthetic sulfur bacteria form the base of the food web.
Beach evolution occurs at the shoreline where sea, lake or river water is eroding the land. Beaches exist where sand accumulated from centuries-old, recurrent processes that erode rocky and sedimentary material into sand deposits. River deltas deposit silt from upriver, accreting at the river's outlet to extend lake or ocean shorelines. Catastrophic events such as tsunamis, hurricanes, and storm surges accelerate beach erosion.
Coastal engineering is a branch of civil engineering concerned with the specific demands posed by constructing at or near the coast, as well as the development of the coast itself.
The Canterbury Bight is a large bight on the eastern side of New Zealand's South Island. The bight runs for approximately 135 kilometres (84 mi) from the southern end of Banks Peninsula to the settlement of Timaru and faces southeast, exposing it to high-energy storm waves originating in the Pacific Ocean. The bight is known for rough conditions as a result, with wave heights of over 2 metres (6.6 ft) common. Much of the bight's geography is shaped by this high-energy environment interacting with multiple large rivers which enter the Pacific in the bight, such as the Rakaia, Ashburton / Hakatere, and Rangitata Rivers. Sediment from these rivers, predominantly Greywacke, is deposited along the coast and extends up to 50 kilometres (31 mi) out to sea from the current shoreline. Multiple hapua, or river-mouth lagoons, can be found along the length of the bight where waves have deposited sufficient sediment to form a barrier across a river mouth, including most notably Lake Ellesmere / Te Waihora and Washdyke Lagoon
Coastal flooding occurs when dry and low-lying land is submerged (flooded) by seawater. The range of a coastal flooding is a result of the elevation of floodwater that penetrates the inland which is controlled by the topography of the coastal land exposed to flooding. The seawater can flood the land via several different paths: direct flooding, overtopping of a barrier, or breaching of a barrier. Coastal flooding is largely a natural event. Due to the effects of climate change and an increase in the population living in coastal areas, the damage caused by coastal flood events has intensified and more people are being affected.
A coastal development hazard is something that affects the natural environment by human activities and products. As coasts become more developed, the vulnerability component of the equation increases as there is more value at risk to the hazard. The likelihood component of the equation also increases in terms of there being more value on the coast so a higher chance of hazardous situation occurring. Fundamentally humans create hazards with their presence. In a coastal example, erosion is a process that happens naturally on the Canterbury Bight as a part of the coastal geomorphology of the area and strong long shore currents. This process becomes a hazard when humans interact with that coastal environment by developing it and creating value in that area.
Coastal sediment supply is the transport of sediment to the beach environment by both fluvial and aeolian transport. While aeolian transport plays a role in the overall sedimentary budget for the coastal environment, it is paled in comparison to the fluvial supply which makes up 95% of sediment entering the ocean. When sediment reaches the coast it is then entrained by longshore drift and littoral cells until it is accreted upon the beach or dunes.
Due to the common occurrence of hurricanes in the coastal state of North Carolina, hurricane recovery in North Carolina is a large component of the state's emergency management efforts. Recovery from these tremendous storms at the local and state level is a large part of the aftermath of a hurricane. Gavin Smith and Victor Flatt stated that "Disaster recovery remains the least understood aspect of hazards management, when assessed relative to preparedness, response, and hazard mitigation." Smith and Flatt also went on to state that the role of the states is even less understood. The review of the plans and policies that instruct recovery, agencies involved, funding processes and budgets, and the environmental effects of a hurricane creates a better understanding of how North Carolina recovers from a hurricane.
The Outer Banks are the barrier islands along the east coast of North Carolina in the United States. They are extremely sensitive to environmental hazards, particularly hurricanes. Hazard mitigation plans have been created and are implemented when a hurricane is forecasted to strike the Outer Banks. The goal of the plans is to identify the policies and tools that are needed in order to reduce or eliminate the risk of life and property loss from any event that may occur in the Outer Banks.
Coastal erosion in Louisiana is the process of steady depletion of wetlands along the state's coastline in marshes, swamps, and barrier islands, particularly affecting the alluvial basin surrounding the mouth of the Mississippi River. In the last century, coastal Louisiana has lost an estimated 4,833 square kilometers (1,866 sq mi) of land, approximately the size of Delaware's land area. Coast wide rates of wetland change have varied from −83.5 square kilometers (−32.2 sq mi) to −28.01 square kilometers (−10.81 sq mi) annually, with peak loss rates occurring during the 1970's. One consequence of coastal erosion is an increased vulnerability to hurricane storm surges, which affects the New Orleans metropolitan area and other communities in the region. The state has outlined a comprehensive master plan for coastal restoration and has begun to implement various restoration projects such as fresh water diversions, but certain zones will have to be prioritized and targeted for restoration efforts, as it is unlikely that all depleted wetlands can be rehabilitated.
Climate change has had large impacts on the ecosystems and landscapes of the US territory Puerto Rico. According to a 2019 report by Germanwatch, Puerto Rico is the most affected by climate change. The territory's energy consumption is mainly derived from imported fossil fuels.
Ecosystem-based adaptation encompasses a broad set of approaches to adapt to climate change. They all involve the management of ecosystems and their services to reduce the vulnerability of human communities to the impacts of climate change. The Convention on Biological Diversity (CBD) defines EBA as "the use of biodiversity and ecosystem services as part of an overall adaptation strategy to help people to adapt to the adverse effects of climate change".