Coco is the latest platform at the Massachusetts Institute of Technology's Humanoid Robotics Group, [1] and a successor to Cog. Unlike previous platforms, Coco is built along more ape-like lines, rather than human. Coco is also notable for being mobile. Although there is ongoing research on the robot, the group has many robots dealing with human interactions. The Humanoid Robotics Group has planned to add more useful functions in the future, but have not set an exact date for such project.
The mission of the Humanoid Robotics Group is to create a robot that can interact with humans and objects without being dependent on a caretaker. Coco should be able to investigate environments and be able to discover important outlooks of the world. Using multiple sensors, Coco should be conducive to human interaction. Interactions with humans include:
All the following dimensions of Coco are in millimeters: [2]
Coco's appearance is ape-like, which coincides with early evolutionary behaviors. It has broad shoulders, short legs, and long arms made of carbon fiber. The robot's color is all black except for the head which is clear and has two colored eyes with cameras that indicate objects near it. The cords connecting the back of the head to the body are used for transmitting codes for movements and reactions.
Coco is a fifteen DOF (degrees of freedom) quadruped with gorilla-like proportions. [3] DOF is the number of independent conditions that define Coco's arrangement. The DOF are located all throughout the robot. There are two DOF per hind leg, one on the hip, another at the knee, three in each front limb, two on the shoulder, and one on the elbow. The head has an additional five DOF for the movement of the object. Coco can change postures and its vestibular system allows it to have its eye ground level to see objects in a small radius. It has a high speed serial cable that links the robot to the main controller.
The controlling method is called torque-position control, which is the force applied to a lever in a rotation. The method most similar to the torque control is the Series Elastic Actuators, "springs that are intentionally placed in series between the motor and actuator output to have a constant force" [4] but that method powers the elastic element. Most of the above methods are useful but the least useful is the elastic element. [5]
As of right now[ when? ], Coco is controlled through many sensors to walk and be aware of the objects in its perimeter. For future uses, Coco will be able to be aware of others emotions and produce a reaction. Coco will also be able to help different types of learning and interact with humans or objects that need its help.
The aim for the Humanoid Robotics Group is for Coco to have many human-like experiences through common sense, emotions, and visuals. The Humanoid Robotics Group would still like to contribute more work to Coco such as: providing the robot with high level functions to develop interactive behaviors, providing aid for some types of learning, providing an improvement in the force control, and providing hand-eye coordination. [6] Some time in the near future Coco should be able to be aware of its own body, have flexible limb dynamics, and be able to interact with human without it being controlled.
The links below are websites to robots that the Humanoid Robotics Group has been involved with. These projects are similar to Coco but have different body structures and postures.
A humanoid robot is a robot resembling the human body in shape. The design may be for functional purposes, such as interacting with human tools and environments, for experimental purposes, such as the study of bipedal locomotion, or for other purposes. In general, humanoid robots have a torso, a head, two arms, and two legs, though some humanoid robots may replicate only part of the body, for example, from the waist up. Some humanoid robots also have heads designed to replicate human facial features such as eyes and mouths. Androids are humanoid robots built to aesthetically resemble humans.
Cog was a project at the Humanoid Robotics Group of the Massachusetts Institute of Technology. It was based on the hypothesis that human-level intelligence requires gaining experience from interacting with humans, like human infants do. This in turn required many interactions with humans over a long period. Because Cog's behavior responded to what humans would consider appropriate and socially salient environmental stimuli, the robot was expected to act more human. This behavior also provided the robot with a better context for deciphering and imitating human behavior. This was intended to allow the robot to learn socially, as humans do.
GuRoo is a humanoid robot developed at the Mobile Robotics Laboratory in the School of Information Technology and Electrical Engineering at the University of Queensland. The design of the GuRoo is based on the human form and it is kept as anthropomorphic as possible. GuRoo is completely autonomous. It is used for research in different areas including dynamic stability, human-robot interaction and machine learning. GuRoo competes in the annual RoboCup. The goal of this competition is to foster the development of robotics through an annual soccer competition. It is the dream of the RoboCup federation to develop a team of fully autonomous humanoid robots, to play against and beat the human team that wins the World Cup in the year 2050.
Robot locomotion is the collective name for the various methods that robots use to transport themselves from place to place.
Domo is an experimental robot made by MIT designed to interact with humans. The brainchild of Jeff Weber and Aaron Edsinger, cofounders of Meka Robotics, its name comes from the Japanese phrase for "thank you very much", domo arigato, as well as the Styx song, "Mr. Roboto". The Domo project was originally funded by NASA, and has now been joined by Toyota in funding robot's development.
SIGMO is a humanoid robot designed to demonstrate the applications of passive dynamics technologies.
The goal of the LOPES project is to design and implement a gait rehabilitation robot for treadmill training. The target group consists of people who have had a stroke and have impaired motor control. The main goals of LOPES are:
Six degrees of freedom (6DOF) refers to the six mechanical degrees of freedom of movement of a rigid body in three-dimensional space. Specifically, the body is free to change position as forward/backward (surge), up/down (heave), left/right (sway) translation in three perpendicular axes, combined with changes in orientation through rotation about three perpendicular axes, often termed yaw, pitch, and roll.
iCub is a 1 metre tall open source robotics humanoid robot testbed for research into human cognition and artificial intelligence.
Marc Raibert is the founder, former CEO, and now Chairman of Boston Dynamics, a robotics company known for creating BigDog, Atlas, Spot, and Handle. He currently serves as the Executive Director of the Boston Dynamics AI Institute, a Hyundai Motor Group organization that is focused on solving the most important problems in robotics and artificial intelligence to achieve fundamental advances in the engineering and science of robotics.
A ball balancing robot also known as a ballbot is a dynamically-stable mobile robot designed to balance on a single spherical wheel. Through its single contact point with the ground, a ballbot is omnidirectional and thus exceptionally agile, maneuverable and organic in motion compared to other ground vehicles. Its dynamic stability enables improved navigability in narrow, crowded and dynamic environments. The ballbot works on the same principle as that of an inverted pendulum.
Legged robots are a type of mobile robot which use articulated limbs, such as leg mechanisms, to provide locomotion. They are more versatile than wheeled robots and can traverse many different terrains, though these advantages require increased complexity and power consumption. Legged robots often imitate legged animals, such as humans or insects, in an example of biomimicry.
Boston Dynamics is an American engineering and robotics design company founded in 1992 as a spin-off from the Massachusetts Institute of Technology. Headquartered in Waltham, Massachusetts, Boston Dynamics has been owned by the Hyundai Motor Group since December 2020, but having only completed the acquisition in June 2021.
Robotics is an interdisciplinary branch of Electronics & Communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
The following outline is provided as an overview of and topical guide to robotics:
Roboy is an advanced humanoid robot that was developed at the Artificial Intelligence Laboratory of the University of Zurich, and was publicly presented on March 8, 2013. Originally designed to emulate humans with the future possibility of helping out in daily environments, Roboy is a project that has involved both engineers and scientists. Initiated in 2012 by Pascal Kaufmann, Roboy is the work of engineers who designed him according to design principles developed by Prof. Dr. Rolf Pfeifer, the AI lab director, in conjunction with the assistance of other development partners. Both the team members and the partners of the Roboy project share a commitment toward continued research in the area of soft robotics. Later Roboy was moved to Munich, Germany, where Rafael Hostettler conducts research on it at the Technical University. Since July 2020, Roboy is located back in Zurich, Switzerland in the offices of the Mindfire Foundation.
As humans move through their environment, they must change the stiffness of their joints in order to effectively interact with their surroundings. Stiffness is the degree to a which an object resists deformation when subjected to a known force. This idea is also referred to as impedance, however, sometimes the idea of deformation under a given load is discussed under the term "compliance" which is the opposite of stiffness . In order to effectively interact with their environment, humans must adjust the stiffness of their limbs. This is accomplished via the co-contraction of antagonistic muscle groups.
Oussama Khatib is a roboticist and a professor of computer science at Stanford University, and a Fellow of the IEEE. He is credited with seminal work in areas ranging from robot motion planning and control, human-friendly robot design, to haptic interaction and human motion synthesis. His work's emphasis has been to develop theories, algorithms, and technologies, that control robot systems by using models of their physical dynamics. These dynamic models are used to derive optimal controllers for complex robots that interact with the environment in real-time.
Nadine is a gynoid humanoid social robot that is modelled on Professor Nadia Magnenat Thalmann. The robot has a strong human-likeness with a natural-looking skin and hair and realistic hands. Nadine is a socially intelligent robot which returns a greeting, makes eye contact, and can remember all the conversations had with it. It is able to answer questions autonomously in several languages, simulate emotions both in gestures and facially, depending on the content of the interaction with the user. Nadine can recognise persons it has previously seen, and engage in flowing conversation. Nadine has been programmed with a "personality", in that its demeanour can change according to what is said to it. Nadine has a total of 27 degrees of freedom for facial expressions and upper body movements. With persons it has previously encountered, it remembers facts and events related to each person. It can assist people with special needs by reading stories, showing images, put on Skype sessions, send emails, and communicate with other members of the family. It can play the role of a receptionist in an office or be dedicated to be a personal coach.
The term “soft robots” designs a broad class of robotic systems whose architecture includes soft elements, with much higher elasticity than traditional rigid robots. Articulated Soft Robots are robots with both soft and rigid parts, inspired to the muscloloskeletal system of vertebrate animals – from reptiles to birds to mammalians to humans. Compliance is typically concentrated in actuators, transmission and joints while structural stability is provided by rigid or semi-rigid links.