Domo (robot)

Last updated

Domo is an experimental robot made by the Massachusetts Institute of Technology designed to interact with humans. The brainchild of Jeff Weber and Aaron Edsinger, cofounders of Meka Robotics, its name comes from the Japanese phrase for "thank you very much", domo arigato, as well as the Styx song, "Mr. Roboto". The Domo project was originally funded by NASA, and has now been joined by Toyota in funding robot's development. [1]

Contents

Purpose

Domo was created to test many robotic circuits and commands that are very complex.

Origin

The home of the Domo Project is with the Humanoid Robotics Group at MIT Artificial Intelligence Labs. [2] Its existence is inspired by the robot projects that came before it.

The Cardea Robot Project was a research project led by Professor Rodney Brooks in the Humanoid Robotics Group at MIT. [3] The lab group worked to create a cable-drive brushless Series Elastic Actuator arm mounted to a Segway platform. Jeff Weber and Aaron Edsinger-Gonzales were a part of this research, specifically responsible for the design and implementation of the robotic arm. This collaboration allowed Edsinger-Gonzales and Weber to take some of the research and apply it to a new robot, Domo.

Edsinger and Weber collaborated on many other robots as well, and their experience working with the Kismet [4] page and Cog [5] projects influenced the design of Domo. Kismet was a robotic head developed by Cynthia Breazeal for experimenting with social expressions and cues. Edsinger's role in the project was helping to develop the early stages of Kismet's eye detection module, which allowed Kismet to make eye contact while interacting. The Cog project was intended to explore the way that intelligence is formed through social interaction. The Cog robot was designed to emulate the human body's motor points and limbs and to accept input stimuli from these so that it could use its limbs in a human-like way. Edsinger's contribution to the Cog project was a Series Elastic Actuator arm and controllers for the body of the robot. Though the research direction of these robots is very different from the Domo Project, the design of the eye detection module and the Series Elastic Actuator arm are integrated into Domo's design. [6]

Design

Domo was created in order to research manipulation and interaction with stimuli and machine learning of sensorimotor skills. To accomplish this, the design was required to have particular consideration as to how the robot would be able to interact with unfamiliar stimuli. The research also required Domo to be able to perceive and act upon its surroundings. Satisfying these concerns meant that Domo needed to be able to function without a complete model of the world, rather, it was equipped with the ability to build a model for itself. [7]

Mechanical parts

Domo's robotic head consists of seven degrees of freedom for the upper head which is attached to a neck with two degrees of freedom. There are two eyes, each with a single wide-angle camera. The cameras are capable of video capture at either 640×480 at 30 frames per second (frame/s) or 1024×768 at 15 frame/s. The two cameras tilt along the same degrees of freedom, but have individual degrees of freedom to allow for independent panning. A set of eyelids is included to use for expressions. [7]

Heads of previous robots, such as Cog, were impeded by the bundle of electrical cords that would run to the eye cameras and motors. Domo's design runs all the cables down through the neck so that they are tucked out of the way. This allows Domo a great deal of range and freedom in head articulation.

The head movement is facilitated by brushed direct-current motors. Potentiometer position sensors in the motor provide feedback as to the head's absolute position at startup, so Domo does not require a calibration routine before being able to function.

The main focus of the head design was for Domo to be able to emulate human eye movement. Human eye movements range from very quick and explosive movements to slow and accurate movements for following moving stimuli, so careful consideration was needed to design Domo's head and vision system. [7]

These eyes are linked to a cognitive system that is a networked cluster of Linux machines. The YARP (Yet Another Robot Platform) software suite is utilized for the cognitive system to do visual processing. [7]

Arms

Rather than designing Domo's arms for absolute precision, Edsinger and Weber designed the arms to work more closely to that of a human. Human arms are adept at sensing and controlling the forces at every joint, giving up precision in position for compliance. Translating this to a humanoid robot required the design to include some tolerance and compliance at every joint while also being able to keep track of and output torque.

Domo's arms have six degrees of freedom, two at the shoulder and four in the arm and wrist. The joints are Series elastic actuators (SEA) driven by custom brushless DC motors. The degrees of freedom contain cable drive systems, with the drive cables hidden discreetly in the center of the joints to not impede movement. Series elastic actuators are used to provide force-sensing capabilities to the arms. The sensors embedded throughout the arms are linked up to the cognitive system. [7]

Hands

The design of a humanoid hand is required to incorporate some way to measure and output force. A few older designs had force sensors in the fingertips. While this would work in a known environment, it does not provide enough feedback to work in a novel and unknown environment. The controllers in Domo's hands are able to sense forces at the individual joints. This allows the hands to execute a grasp of an object even without a model of the object's size, shape or material.

Each hand consists of three fingers powered by four actuators. There is one actuator for each finger and the fourth is to control the spread between two of the fingers. The two fingers are spread using gears, while the third remains in place. [7]

Abilities

Domo will adapt to its surroundings by testing the physical nature of things by touching them or shaking them. Its abilities include determining the volume of an item, placing items on shelves, pouring drinks for humans, shaking hands, and giving hugs. [8]

Perception

Using the two cameras mounted on its head and the visual processing system, Domo is able to analyze the size and shape of an object to prepare for interaction. This is done without prior knowledge about an object and allows Domo to accomplish tasks in unknown environments.

Learning

Domo's architecture allows for the robot to remember previous sensory experiences. Domo is able to learn about its own sensorimotor abilities and is able to fine-tune the modulation of its actions based on previously accomplished tasks.

Manipulation

Domo's hands were designed to be dexterous and capable of many different grasps and movements. However, this cannot be accomplished without the design of the software system to be adept at managing different controllers for each of its joints. This allows the robot to be able to react quickly and change its arm activity. This is critical for the robot to be able to attempt to perform real world tasks.

Related Research Articles

<span class="mw-page-title-main">Android (robot)</span> Robot resembling a human

An android is a humanoid robot or other artificial being often made from a flesh-like material. Historically, androids were completely within the domain of science fiction and frequently seen in film and television, but advances in robot technology now allow the design of functional and realistic humanoid robots.

<span class="mw-page-title-main">Humanoid robot</span> Body shape similar to a human

A humanoid robot is a robot resembling the human body in shape. The design may be for functional purposes, such as interacting with human tools and environments, for experimental purposes, such as the study of bipedal locomotion, or for other purposes. In general, humanoid robots have a torso, a head, two arms, and two legs, though some humanoid robots may replicate only part of the body, for example, from the waist up. Some humanoid robots also have heads designed to replicate human facial features such as eyes and mouths. Androids are humanoid robots built to aesthetically resemble humans.

<span class="mw-page-title-main">Cog (project)</span>

Cog was a project at the Humanoid Robotics Group of the Massachusetts Institute of Technology. It was based on the hypothesis that human-level intelligence requires gaining experience from interacting with humans, like human infants do. This in turn required many interactions with humans over a long period. Because Cog's behavior responded to what humans would consider appropriate and socially salient environmental stimuli, the robot was expected to act more human. This behavior also provided the robot with a better context for deciphering and imitating human behavior. This was intended to allow the robot to learn socially, as humans do.

<span class="mw-page-title-main">Audio-Animatronics</span> Trademark for a form of robotic animation

Audio-Animatronics is the registered trademark for a form of robotics animation created by Walt Disney Imagineering for shows and attractions at Disney theme parks, and subsequently expanded on and used by other companies. The robots move and make noise, but are usually fixed to whatever supports them. They can sit and stand but usually cannot walk. An Audio-Animatronic is different from an android-type robot in that it uses prerecorded movements and sounds, rather than responding to external stimuli. In 2009, Disney debuted an interactive version of the technology called Autonomatronics, and in 2018, announced aerial stunt figures called Stuntronics.

GuRoo is a humanoid robot developed at the Mobile Robotics Laboratory in the School of Information Technology and Electrical Engineering at the University of Queensland. The design of the GuRoo is based on the human form and it is kept as anthropomorphic as possible. GuRoo is completely autonomous. It is used for research in different areas including dynamic stability, human-robot interaction and machine learning. GuRoo competes in the annual RoboCup. The goal of this competition is to foster the development of robotics through an annual soccer competition. It is the dream of the RoboCup federation to develop a team of fully autonomous humanoid robots, to play against and beat the human team that wins the World Cup in the year 2050.

<span class="mw-page-title-main">Canadarm</span> Robotic arm used to manoeuvre and capture mission payloads on the Space Shuttle

Canadarm or Canadarm1 is a series of robotic arms that were used on the Space Shuttle orbiters to deploy, manoeuvre, and capture payloads. After the Space Shuttle Columbia disaster, the Canadarm was always paired with the Orbiter Boom Sensor System (OBSS), which was used to inspect the exterior of the shuttle for damage to the thermal protection system.

SIGMO is a humanoid robot designed to demonstrate the applications of passive dynamics technologies.

iCub Open source robotics humanoid robot testbed

iCub is a one meter tall open source robotics humanoid robot testbed for research into human cognition and artificial intelligence.

Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots. Robotics is related to the sciences of electronics, engineering, mechanics, and software. The word "robot" was introduced to the public by Czech writer Karel Čapek in his play R.U.R., published in 1920. The term "robotics" was coined by Isaac Asimov in his 1941 science fiction short-story "Liar!"

<span class="mw-page-title-main">Shadow Hand</span> Robot hand system

The Shadow Dexterous Hand is a humanoid robot hand system developed by The Shadow Robot Company in London. The hand is comparable to a human hand in size and shape, and reproduces all of its degrees of freedom. The Hand is commercially available in pneumatic- and electric-actuated models and currently used in a wide range of institutions including NASA, Bielefeld University and Carnegie Mellon University, and EU research projects such as HANDLE.

Coco is the latest platform at the Massachusetts Institute of Technology's Humanoid Robotics Group, and a successor to Cog. Unlike previous platforms, Coco is built along more ape-like lines, rather than human. Coco is also notable for being mobile. Although there is ongoing research on the robot, the group has many robots dealing with human interactions. The Humanoid Robotics Group has planned to add more useful functions in the future, but have not set an exact date for such project.

<span class="mw-page-title-main">Robotic arm</span> Type of mechanical arm with similar functions to a human arm

A robotic arm is a type of mechanical arm, usually programmable, with similar functions to a human arm; the arm may be the sum total of the mechanism or may be part of a more complex robot. The links of such a manipulator are connected by joints allowing either rotational motion or translational (linear) displacement. The links of the manipulator can be considered to form a kinematic chain. The terminus of the kinematic chain of the manipulator is called the end effector and it is analogous to the human hand. However, the term "robotic hand" as a synonym of the robotic arm is often proscribed.

<span class="mw-page-title-main">Mechanical arm</span> Machine that mimics the action of a human arm

A mechanical arm is a machine that mimics the action of a human arm. Mechanical arms are composed of multiple beams connected by hinges powered by actuators. One end of the arm is attached to a firm base while the other has a tool. They can be controlled by humans either directly or over a distance. A computer-controlled mechanical arm is called a robotic arm. However, a robotic arm is just one of many types of different mechanical arms.

Neurorobotics is the combined study of neuroscience, robotics, and artificial intelligence. It is the science and technology of embodied autonomous neural systems. Neural systems include brain-inspired algorithms, computational models of biological neural networks and actual biological systems. Such neural systems can be embodied in machines with mechanic or any other forms of physical actuation. This includes robots, prosthetic or wearable systems but also, at smaller scale, micro-machines and, at the larger scales, furniture and infrastructures.

The following outline is provided as an overview of and topical guide to robotics:

<span class="mw-page-title-main">Justin (robot)</span> Humanoid robot

Justin is an autonomous and programmable humanoid robot with two arms, developed by the German Aerospace Center (DLR) at the Institute of Robotics and Mechatronics, located in Wessling, Germany. Introduced in 2009, this wireless robot is controllable through telepresence, a type of technology that allows a person to feel as if he or she were present from a location other than his or her true location.

Meka Robotics was a San Francisco–based company that made robotic systems.

<span class="mw-page-title-main">Roboy</span>

Roboy is an advanced humanoid robot that was developed at the Artificial Intelligence Laboratory of the University of Zurich, and was publicly presented on March 8, 2013. Originally designed to emulate humans with the future possibility of helping out in daily environments, Roboy is a project that has involved both engineers and scientists. Initiated in 2012 by Pascal Kaufmann, Roboy is the work of engineers who designed him according to design principles developed by Prof. Dr. Rolf Pfeifer, the AI lab director, in conjunction with the assistance of other development partners. Both the team members and the partners of the Roboy project share a commitment toward continued research in the area of soft robotics. Later Roboy was moved to Munich, Germany, where Rafael Hostettler conducts research on it at the Technical University. Since July 2020, Roboy is located back in Zurich, Switzerland in the offices of the Mindfire Foundation.

The Telenoid R1 is a remote-controlled telepresence android created by Japanese roboticist Hiroshi Ishiguro. The R1 model, released in August 2010, is approximately 80 cm tall, weighs 5 kg and is made out of silicone rubber. The primary usage of the Telenoid R1 is an audio and movement transmitter through which people can relay messages over long distances. The purpose is for the user to feel as though they are communicating with a far-away acquaintance. Cameras and microphones capture the voice and movements of an operator which are projected through the Telenoid R1 to the user.

The term “soft robots” designs a broad class of robotic systems whose architecture includes soft elements, with much higher elasticity than traditional rigid robots. Articulated Soft Robots are robots with both soft and rigid parts, inspired to the muscloloskeletal system of vertebrate animals – from reptiles to birds to mammalians to humans. Compliance is typically concentrated in actuators, transmission and joints while structural stability is provided by rigid or semi-rigid links.

References

  1. Chao, Tom (2007-04-16). "New Robot Eyes People With Human-Like Eyes". foxnews.com. News Corporation. Retrieved 2007-08-20.
  2. "Edsinger Domo".
  3. "Edsinger Cardea".
  4. "Edsinger Kismet".
  5. "Edsinger Cog".
  6. "Aaron Edsinger-Gonzales".
  7. 1 2 3 4 5 6 Edsinger-Gonzales, Aaron and Jeff Weber (May 2004). "Domo: A Force Sensing Humanoid Robot for Manipulation Research". International Journal of Humanoid Robotics .
  8. Lange, Karen E. (September 2007). "Coffee, Tea, or WD-40?". National Geographic Magazine . 212 (3): 28.