Nao (robot)

Last updated

NAO EVOLUTION V5
Nao Robot (Robocup 2016).jpg
Robocup, 2016
Manufacturer SoftBank Robotics (previously Aldebaran Robotics)
CountryFrance
Year of creation2008 (first public version)
Type Humanoid robot
PurposeResearch, education and entertainment
A Nao robot at the Fêtons Linux in Geneva, Switzerland, in October 2011 (video)
Nao robots in a Webots RoboCup soccer simulation Nao - Webots.png
Nao robots in a Webots RoboCup soccer simulation
Two NAO robots simulating a loving couple watching a movie Pareja de robots NAO.jpg
Two NAO robots simulating a loving couple watching a movie

Nao (pronounced now) is an autonomous, programmable humanoid robot formerly developed by Aldebaran Robotics, a French robotics company headquartered in Paris, which was acquired by SoftBank Group in 2015 and rebranded as SoftBank Robotics. The robot's development began with the launch of Project Nao in 2004. On 15 August 2007, Nao replaced Sony's robot dog Aibo as the robot used in the RoboCup Standard Platform League (SPL), an international robot soccer competition. [1] The Nao was used in RoboCup 2008 and 2009, and the NaoV3R was chosen as the platform for the SPL at RoboCup 2010. [2]

Contents

Several versions of the robot have been released since 2008. The Nao Academics Edition was developed for universities and laboratories for research and education purposes. It was released to institutions in 2008, and was made publicly available by 2011. Various upgrades to the Nao platform have since been released, including the 2011 Nao Next Gen, the 2014 Nao Evolution and the 2018 Nao⁶ [3] [4]

Nao robots have been used for research and education purposes in numerous academic institutions worldwide. As of 2024, over 13,000 Nao units are in use in more than 70 countries. [4]

Development history

Aldebaran Robotics was established in 2005 by Bruno Maisonnier, who had previously begun developing the robot under "Project Nao" in 2004. [4] Six prototypes of Nao were designed between 2005 and 2007. In March 2008, the first production version of the robot, the Nao RoboCup Edition, was released to the contestants of that year's RoboCup. [5] The Nao Academics Edition was released to universities, educational institutions and research laboratories in late 2008.

In the summer of 2010, Nao made global headlines with a synchronized dance routine at the Shanghai Expo in China. [6] In October 2010, the University of Tokyo purchased 30 Nao robots for their Nakamura Lab, with hopes of developing the robots into active laboratory assistants. [7] In December 2010, a Nao robot was demonstrated doing a stand-up comedy routine, [8] and a new version of the robot was released, featuring sculpted arms and improved motors. In May 2011, Aldebaran announced that it would release Nao's controlling source code to the public as open source software. [9] In June 2011, Aldebaran raised US$13 million in a round of venture funding led by Intel Capital. [10] In 2013, Aldebaran was acquired by Japan's SoftBank Mobile for US$100 million. [11]

In December 2011, Aldebaran released the Nao Next Gen, featuring hardware and software enhancements such as high-density cameras, improved robustness, anti-collision systems and a faster walking speed. [3] The Nao Evolution, featuring enhanced durability, improved multilingual speech synthesis, improved shape and facial detection and recognition using new algorithms, and improved sound source location using four directional microphones, was released in June 2014. [4]

Aldebaran Robotics was acquired by SoftBank Group in 2015 and rebranded as SoftBank Robotics. In July 2022, the French company was sold to United Robotics Group and rebranded Aldebaran again.

Academic and scientific usage

Since 2011, over 200 academic institutions worldwide have made use of the robot, including the University of Hertfordshire and their Bold Hearts RoboCup Team, the Indian Institute of Information Technology, Allahabad, the University of Tokyo, [7] the Indian Institute of Technology Kanpur, [12] Saudi Arabia's King Fahd University of Petroleum and Minerals, University of South Wales and Montana State University. [13] [14] In 2012, donated Nao robots were used to teach autistic children in a UK school; some of the children found the childlike, expressive robots more relatable than human beings. [15] [16] In a broader context, Nao robots have been used by numerous British schools to introduce children to robots and the robotics industry. [17]

By the end of 2014, over 5,000 Nao robots were in use with educational and research institutions in 70 countries. [4] In 2015, Mitsubishi UFJ Financial Group began trialing Nao robots for customer service use in its Japanese bank branches. [18] In July 2015, Nao robots were shown to demonstrate a basic form of self-awareness in a philosophical experiment at Rensselaer Polytechnic Institute in New York, in which three robots were set up, muting two of them; they were then told that two of them had been given a "dumbing pill", and asked to figure out which of them hadn't. After initially replying he didn't know, the non-muted robot was able to figure out he hadn't been given the dumbing pill after hearing the sound of his own voice. [19] In September 2015, the French Institute of Health and Medical Research used Nao robots to test a system of robotic "autobiographical memory" designed to help train International Space Station crews and assist elderly patients. [20]

Nao is available as a research robot for schools, colleges and universities to teach programming and conduct research into human-robot interactions. [21]

In August 2018, RobotLAB released an online learning platform for schools that enhance the use of NAO for STEM, Coding and Engineering. [22]

Healthcare usage

Since its release in 2004, Nao has been tested and deployed in a number of healthcare scenarios, including usage in care homes [23] and in schools.

Design

The various versions of the Nao robotics platform feature either 2, 14, 21 or 25 degrees of freedom (DoF). A specialized model with 21 DoF and no actuated hands was created for the Robocup competition. All Nao Academics versions feature an inertial measurement unit with accelerometer, gyroscope and four ultrasonic sensors that provide Nao with stability and positioning within space. The legged versions included eight force-sensing resistors and two bumpers. The 2014 Nao Evolution, featured stronger metallic joints, improved grip and an enhanced sound source location system that utilizes four directional microphones. [4] The most recent version, Nao⁶ was introduced in June 2018. [24] [25]

Software

The Nao robot is controlled by a specialized Linux-based operating system, dubbed NAOqi. [4] The OS powers the robot's multimedia system, which includes four microphones (for voice recognition and sound localization), two speakers (for multilingual text-to-speech synthesis) and two HD cameras (for computer vision, including facial and shape recognition). The robot also comes with a software suite that includes a graphical programming tool dubbed Choregraphe, [26] a simulation software package and a software developer's kit. Nao is furthermore compatible with the Microsoft Robotics Studio, Cyberbotics Webots, and the Gostai Studio (URBI). [27]

In August 2018, RobotLAB released Engage! K12. It is an online learning platform for schools that enhance the use of NAO for STEM, Coding and Engineering. [22] In February 2018, Finnish company Utelias Technologies released Elias Robot, a learning application that helps to learn languages with NAO. [28]

Specifications

Robot VersionNao V3+ (2008)Nao V3.2 (2009)Nao V3.3 (2010)Nao Next Gen (V4) (2011) [29] Nao Evolution (V5) (2014) [30] Nao Power 6 (V6) (2018) [31]
Height573.2 millimetres (22.57 in)573 millimetres (22.6 in)574 millimetres (22.6 in)
Depth290 millimetres (11 in)311 millimetres (12.2 in)
Width273.3 millimetres (10.76 in)275 millimetres (10.8 in)
Weight4.836 kilograms (10.66 lb)4.996 kilograms (11.01 lb)5.1825 kilograms (11.425 lb)5.305 kilograms (11.70 lb)5.48 kilograms (12.1 lb)
Power supplylithium battery providing 27.6 Wh at 21.6Vlithium battery providing 48.6 Wh at 21.6Vlithium battery providing 62.5 Wh at 21.6V
Autonomy60 minutes (active use)90 minutes (active use)
Degrees of freedom25 [32]
CPUx86 AMD GEODE 500 MHzIntel Atom Z530 @ 1.6 GHz Intel Atom E3845 Quad Core @ 1.91 GHz
RAM256 MB1 GB4 GB DDR3
Storage2 GB Flash memory2 GB Flash memory + 8 GB Micro SDHC32 GB SSD
Built-in OSOpenNAO 1.6 (OpenEmbedded-based)OpenNAO 1.8 (OpenEmbedded- based)OpenNAO 1.10 (OpenEmbedded- based)OpenNAO 1.12 (gentoo-based)NAOqi 2.1 (gentoo-based)NAOqi 2.8 (openembedded-based)
Compatible OS Windows, Mac OS, Linux
Programming languages C++, Python, Java, MATLAB, Urbi, C, .Net
Simulation environment Webots
Cameras
  • 2 x Camera:
    • OV7670 VGA(640x480), 30 fps.
    • Type: System-on-a-chip (SoC) CMOS image sensor
    • Optical format 1/6 inch
    • Focus range: 30 cm - infinity.
    • 58° Diagonal Field Of View (47.8° Horizontal FOV, 36.8° Vertical FOV)
  • 2 x Camera:
    • MT9M114 960p(1280x960), 30fps
    • Type: System-on-a-chip (SoC) CMOS image sensor
    • Optical format: 1/6 inch
    • Focus range: 30 cm - infinity.
    • 72.6° Diagonal Field Of View (60.9° Horizontal FOV, 47.6° Vertical FOV)
  • 2 x Camera:
    • OV5640
    • Type: System-on-a-chip (SoC) CMOS image sensor
    • Optical format: 1/4 inch
    • Active Pixels (HxV): 2592x1944 (5 MP)
    • Output Camera output: 640*480@30fps or 2560*1920@1fps
    • View Field of view: 67.4°DFOV (56.3°HFOV,43.7°VFOV)
    • Focus type: Auto focus
Sensors
  • 36 MRE (Magnetic Rotary Encoders) using Hall-effect sensor technology. 12 bit precision, ie 4096 values per turn corresponding to about 0.1° precision
  • 8 x FSR (force-sensing resistors).
  • 2 x I/R.
    • Wavelength = 940 nm.
    • Emission angle = +/- 60°.
    • Power =8 mW/sr
  • 2 x bumpers located at the tip of each foot. These are simple ON/OFF switches. There is no difference between a push on the left or right foot.
  • Capacitive sensor
  • 2 x gyrometer 1 axis
  • 1 x accelerometer 3 axis
  • 1 x gyrometer 3 axis
  • 1 x accelerometer 3-axis
  • 1 x gyrometer 3-axis
  • 1 x accelerometer 3-axis
  • Sonar: 2 emitters, 2 receivers
    • Frequency: 40 kHz.
    • Sensitivity: -86 dB.
    • Resolution: 10mm.
    • Detection range: 0.25 - 2.55 m.
    • Effective cone: 60°.
  • Sonar: 2 emitters, 2 receivers.
    • Frequency: 40 kHz.
    • Sensitivity: -86 dB.
    • Resolution: 10 mm.
    • Detection range: 0.25 - 2.55 m.
    • Effective cone: 60°.
  • Sonar: 2 emitters, 2 receivers.
    • Frequency: 40 kHz
    • Resolution: 1 cm-4 cm (depending on distance)
    • Detection range: 0.20 m - 3 m
    • Effective cone: 60°
  • Sonar: 2 emitters, 2 receivers.
    • Frequency: 40 kHz
    • Resolution: 1 cm-4 cm (depending on distance)
    • Detection range: 0.20 m - 3 m
    • Effective cone: 60°
  • 4 microphones:
    • Sensitivity: -40 +/- 3 dB
    • Frequency range: 20 Hz-20 kHz
    • Signal/noise ratio: 58dBA
  • 4 microphones:
    • Sensitivity: -40 +/- 3 dB
    • Frequency range: 20 Hz-20 kHz
    • Signal/noise ratio: 58dBA
  • Microphones x4 on the head
    • Sensitivity 20mV/Pa +/-3 dB at 1KHz
    • Frequency range 150 Hz to 12 kHz
  • 4 omnidirectional Microphones
    • Sensitivity: 250mV/Pa +/-3 dB at 1 kHz
    • Frequency: range 100 Hz to 10 kHz (-10 dB relative to 1 kHz)
Connectivity Ethernet, Wi-Fi IEEE 802.11 a/b/gEthernet, Wi-Fi IEEE 802.11 a/b/g/n

See also

Robots of comparable role, configuration, dimensions and era

Related Research Articles

AIBO is a series of robotic dogs designed and manufactured by Sony. Sony announced a prototype Aibo in mid-1998, and the first consumer model was introduced on 11 May 1999. New models were released every year until 2006. Although most models were dogs, other inspirations included lion cubs and space explorers. Only the ERS-7, ERS-110/111 and ERS-1000 versions were explicitly a "robotic dog", but the 210 can also be considered a dog due to its Jack Russell Terrier appearance and face. In 2006, AIBO was added into the Carnegie Mellon University Robot Hall of Fame.

PeopleSoft, Inc. was a company that provides human resource management systems (HRMS) better known as human capital management (HCM), financial management solutions (FMS), supply chain management (SCM), customer relationship management (CRM), and enterprise performance management (EPM) software, as well as software for manufacturing, and student administration to large corporations, governments, and organizations. It existed as an independent corporation until its acquisition by Oracle Corporation in 2005. The PeopleSoft name and product line are now marketed by Oracle.

<span class="mw-page-title-main">Lego Mindstorms</span> Hardware and software platform by Lego

Lego Mindstorms is a discontinued line of educational kits for building programmable robots based on Lego bricks. It was introduced on 1 September 1998 and discontinued on 31 December 2022.

<span class="mw-page-title-main">RoboCup</span> Annual robotics competition

RoboCup is an annual international robotics competition founded in 1996 by a group of university professors. The aim of the competition is to promote robotics and AI research by offering a publicly appealing – but formidable – challenge.

<span class="mw-page-title-main">SoftBank Group</span> Japanese investment holding company

SoftBank Group Corp. is a Japanese multinational investment holding company headquartered in Minato, Tokyo, Japan which focuses on investment management. The group primarily invests in companies operating in technology that offer goods and services to customers in a multitude of markets and industries ranging from the internet to automation. With over $100 billion in capital at its onset, SoftBank's Vision Fund is the world's largest technology-focused venture capital fund. Fund investors included sovereign wealth funds from countries in the Middle East.

<span class="mw-page-title-main">Adobe Captivate</span> Authoring tool used for creating eLearning content

Adobe Captivate is an authoring tool that is used for creating eLearning content such as software demonstrations, software simulations, branched scenarios, and randomized quizzes in HTML5 format.

i-Cybie Robotic toy dog

i-Cybie (爱赛比) is a robotic pet that resembles a dog. It was manufactured by Silverlit Toys Manufactory Ltd Hong Kong from 2000 to 2006. i-Cybie was developed for commercial distribution by Tiger Electronics. Outrageous International Hong Kong distributed the electronic pet from 2005 to 2006. The i-Cybie robotic dog responds to sound, touch, movement, and voice commands. The toy robot can autonomously recharge its batteries using a special docking station. I-Cybie was the first mass-produced toy that used advanced voice recognition technology.

<span class="mw-page-title-main">Lego Mindstorms NXT</span> Programmable robotics kit

Lego Mindstorms NXT is a programmable robotics kit released by Lego on August 2, 2006. It replaced the Robotics Invention System, the first-generation Lego Mindstorms kit. The base kit ships in two versions: the retail version and the education base set. It comes with the NXT-G programming software or the optional LabVIEW for Lego Mindstorms. A variety of unofficial languages exist, such as NXC, NBC, leJOS NXJ, and RobotC. A second-generation set, Lego Mindstorms NXT 2.0, was released on August 1, 2009, with a color sensor and other upgrades. The third-generation EV3 was released in September 2013.

Urbi is an open-source cross-platform software computing platform written in C++ used to develop applications for robotics and complex systems. Urbi is based on the UObject distributed C++ component architecture. It also includes the urbiscript orchestration language which is a parallel and event-driven script language. UObject components can be plugged into urbiscript and appear as native objects that can be scripted to specify their interactions and data exchanges. UObjects can be linked to the urbiscript interpreter, or executed as autonomous processes in "remote" mode.

<span class="mw-page-title-main">Webots</span> Open-source robot simulator

Webots is a free and open-source 3D robot simulator used in industry, education and research.

<span class="mw-page-title-main">Hiroaki Kitano</span> Japanese scientist (born 1961)

Hiroaki Kitano is a Japanese scientist. He is the head of the Systems Biology Institute (SBI); Senior Executive Vice President and Chief Technology Officer of Sony Group Corporation, Chief Executive Officer of Sony Research Inc. and Sony Computer Science Laboratories, Inc.; a Group Director of the Laboratory for Disease Systems Modeling at and RIKEN Center for Integrative Medical Sciences; and a professor at Okinawa Institute of Science and Technology (OIST). Kitano is known for developing AIBO, and the robotic world cup tournament known as Robocup.

<span class="mw-page-title-main">Robot Operating System</span> Set of software frameworks for robot software development

Robot Operating System is an open-source robotics middleware suite. Although ROS is not an operating system (OS) but a set of software frameworks for robot software development, it provides services designed for a heterogeneous computer cluster such as hardware abstraction, low-level device control, implementation of commonly used functionality, message-passing between processes, and package management. Running sets of ROS-based processes are represented in a graph architecture where processing takes place in nodes that may receive, post, and multiplex sensor data, control, state, planning, actuator, and other messages. Despite the importance of reactivity and low latency in robot control, ROS is not a real-time operating system (RTOS). However, it is possible to integrate ROS with real-time computing code. The lack of support for real-time systems has been addressed in the creation of ROS 2, a major revision of the ROS API which will take advantage of modern libraries and technologies for core ROS functions and add support for real-time code and embedded system hardware.

The following outline is provided as an overview of and topical guide to robotics:

<span class="mw-page-title-main">RoboCup Standard Platform League</span>

The RoboCup Standard Platform League (SPL) is one of several leagues within RoboCup, an international competition with autonomous robotic soccer matches as the main event.

<span class="mw-page-title-main">RoboCup 3D Soccer Simulation League</span>

The RoboCup 3D Simulated Soccer League allows software agents to control humanoid robots to compete against one another in a realistic simulation of the rules and physics of a game of soccer. The platform strives to reproduce the software programming challenges faced when building real physical robots for this purpose. In doing so, it helps research towards the RoboCup Federation's goal of developing a team of fully autonomous humanoid robots that can win against the human world soccer champion team in 2050.

<span class="mw-page-title-main">Pepper (robot)</span> Model of humanoid robot

Pepper is a semi-humanoid robot manufactured by SoftBank Robotics, designed with the ability to read emotions. It was introduced in Japan in June 2014.

Jean-Christophe Baillie is a French scientist and entrepreneur. He founded the ENSTA ParisTech Robotics Lab where he worked on developmental robotics and computational evolutionary linguistics. While at ENSTA, he designed the urbiscript programming language to control robots, which became the base technology of Gostai, a robotics startup he created in 2006, which was acquired by Aldebaran Robotics in 2012.

<span class="mw-page-title-main">ERS-7</span> Entertainment robot

The AIBO ERS-7 is an entertainment robot created for the commercial market. Initially released in 2003, it was the first AIBO installment to be explicitly referred to as a dog and saw adoption in both research and popular culture. It was the last robot developed before the dissolution of Sony's robotics division in 2006 and the eventual release of the ERS-1000 in 2018.

RobotLAB is an American educational technology company that manufactures robotics and virtual reality products for K-12 and higher education, as well as business robots for retail, hospitality, and medical companies. The company distributes the Pepper and NAO humanoid robots developed by SoftBank Robotics. They are headquartered in Dallas, Texas.

Angelica Lim is an American-Canadian AI roboticist. She first started researching robots in 2008. Lim is currently an assistant professor in Computing Science at Simon Fraser University in Canada. She is also the head and founder of the Simon Fraser University Rosie Lab, which specializes in AI software development. Much of her work involves exploring the emotional capabilities of AI machines, and how AI interacts with music. Lim is the first to provide a scientifically published definition and implementation for robot feelings.

References

  1. "Nao robot replaces AIBO in RoboCup Standard Platform League". Engadget. 16 August 2007. Retrieved 4 October 2012.
  2. "UK robots prepare for world cup". BBC. 25 October 2010. Retrieved 4 October 2012.
  3. 1 2 "Aldebaran Robotics announces Nao Next Gen humanoid robot". Engadget. 10 December 2011. Retrieved 15 April 2012.
  4. 1 2 3 4 5 6 7 "Unveiling of NAO Evolution: a stronger robot and a more comprehensive operating system". Aldebaran Robotics. 2014. Archived from the original on 1 February 2015. Retrieved 1 February 2015.
  5. "RoboCup Standard Platform League". Tzi.de. Retrieved 4 October 2012.
  6. "Robotic mascot entertains at Shanghai Expo" Archived 21 October 2012 at the Wayback Machine . ChannelNewsAsia.com. 21 June 2010. Retrieved 4 October 2012.
  7. 1 2 "Le robot français Nao fait ses classes à l'Université de Tokyo" Archived 21 October 2010 at the Wayback Machine (in French). L'Express . Retrieved 4 October 2012.
  8. "Heather Knight: Silicon-based comedy". TED. December 2010. Retrieved 4 October 2012.
  9. "Aldebaran to Open Source NAO's code" Archived 24 July 2012 at the Wayback Machine . Nao Developer. 13 May 2011. Retrieved 4 October 2012.
  10. "Aldebaran raises $13 million in round led by Intel Capital" Archived 15 November 2012 at the Wayback Machine . Aldebaran Robotics. 2011. Retrieved 4 October 2012.
  11. "The Sad Story of Softbank's Aldebaran Robotics and its Emotionally Intelligent Robot". RudeBaguette.com. 15 December 2012. Retrieved 4 February 2015.
  12. "Robot that walks, talks, emotes like humans...'Nao'". The Times of India . 4 February 2013. Archived from the original on 9 November 2013. Retrieved 8 February 2013.
  13. Nash, Audrow (23 January 2015). "Robots: Looney the Robot". RobotsPodcast.com. Retrieved 10 February 2015.
  14. "Nao, le robot que les universités s'arrachent" (in French). DigiSchool Média. 4 February 2013. Archived from the original on 1 February 2014. Retrieved 16 February 2013.
  15. "Robots in the classroom help autistic children learn". BBC. 8 November 2012. Retrieved 9 November 2012.
  16. "AskNAO". Aldebaran Robotics. Archived from the original on 5 February 2015. Retrieved 1 February 2015.
  17. "Robots found in the classroom". Active Robots Ltd. 12 September 2014. Archived from the original on 4 March 2016. Retrieved 19 June 2023.
  18. "Japanese bank introduces robot workers to deal with customers in branches". The Guardian . 4 February 2015. Retrieved 4 February 2015.
  19. "Polite robots show glimmer of self-awareness". Popular Science . 16 July 2015. Retrieved 23 December 2015.
  20. "'Autobiographical memory' lets robots act as knowledge go-betweens for ISS crews". Gizmag.com. 8 September 2015. Retrieved 16 September 2015.
  21. "For education & research". SoftBank Robotics. Archived from the original on 2 October 2016. Retrieved 30 September 2016.
  22. 1 2 "Launch of Engage! K12". Markets Insider. Retrieved 6 August 2018.
  23. "'What about that human touch?' Elderly will be cared for by ROBOTS to solve staff shortage". 13 May 2018.
  24. "NAO6 Press Kit .PDF". SoftBank Robotics. Announced June 21, 2018.
  25. "MODEL: H25600 Specifications .PDF". SoftBank Robotics. Announced June 21, 2018
  26. Choregraphe User Guide. Aldebaran Robotics. Retrieved 1 February 2015.
  27. "NAO NEXT Gen H25 Datasheet". Aldebaran Robotics. December 2011. Retrieved 4 October 2012.
  28. "Techno Teachers". Reuters. 27 March 2018.
  29. "NAO Technical overview — NAO Software 1.14.5 documentation". doc.aldebaran.com. Retrieved 21 May 2019.
  30. "NAO - Construction — Aldebaran 2.1.4.13 documentation". doc.aldebaran.com. Retrieved 21 May 2019.
  31. "NAO Power V6 Standard Edition". RobotLAB. 2018. Retrieved 1 August 2018.
  32. "NAO degrees of freedom (3D animation)" . Retrieved 18 May 2018.