GuRoo

Last updated

GuRoo is a humanoid robot developed at the Mobile Robotics Laboratory in the School of Information Technology and Electrical Engineering at the University of Queensland. [1] The design of the GuRoo is based on the human form and it is kept as anthropomorphic as possible. [2] GuRoo is completely autonomous. It is used for research in different areas including dynamic stability, human-robot interaction and machine learning. GuRoo competes in the annual RoboCup. The goal of this competition is to foster the development of robotics through an annual soccer competition. It is the dream of the RoboCup federation to develop a team of fully autonomous humanoid robots, to play against and beat the human team that wins the World Cup in the year 2050.

Contents

Specifications

Mechanical

GuRoo was designed with the proportions of a child of approximately six years of age. The robot is able to interface with typical human environments such as bench tops and door handles. The mechanical design began in 2001 as an undergraduate thesis project. SolidEdge a solid modeling package was used to draft all sections of the robot under construction, it took physical form one year later. The majority of the structure is made of 3mm aluminium plate and angle sections. The structure is heavily milled to reduce weight and improve airflow over the motors and power electronics.

Electro Mechanical

In an effort to mimic the human body, the GuRoo has been built with 23 degrees of freedom. The actuators chosen tended towards a high torque/low speed combination to suit the anthropomorphic nature of human locomotion. In addition, no joint is required to move through more than one complete revolution. The GuRoo stands 1.2 m tall and weighs 38 kg with batteries.

The high power necessary for the lower limbs and spine was realised with brushed DC motors, for cost reasons and ease of implementation, all lower joints use the same motor/ gearhead combination. The Maxon RE 32 series motor wound for a nominal 32V in combinations with a ceramic 156:1, 72% efficient, planetary gearhead is used. The maximum continuous output torque available is 10Nm with maximum speed of 5.3 rad/s at 2 amps of current consumption. Maximum intermittently permissible torque available is 22.5Nm at 4a. The length of the motors dictated the width of GuRoo's legs. The high-powered motors made up 33% of the total weight of the robot.

Low power, low weight, and ease of controllability were the factors in choosing the actuators for the upper limbs. The RC servo motors used are Hi-Tech HS705-MG, capable of 1.4Nm output torque at speeds of 5.2 rad/s at 5V. Intrinsic metal gear boxes allow a relatively large output torque from a small package. Each servo weights 0.125 kg. Each motor has an internal close loop control systems but does not provide feedback to the main GuRoo controller. Digital servo motors, providing additional extra torque and accuracy, are being implemented in the head and neck.

If the robot is un-powered and lifted off the ground, the legs will naturally swing together as the centre of mass of the leg is outside of the hip joint. Additional torsion springs with a spring constant 1Nm/degree are located in parallel with the hip roll actuators to prevent this from occurring. The springs are set such that when un-powered, the legs of the robot hang straight down. The additional torque from the spring also alleviates the stress on the hip roll motor during the single support phase of a typical walking gait.

As might be expected, GuRoo can only approximate many human movements. One of the obvious is the crudely copied flexible spine. A human spine has 24 vertebrae distributed along the entire length that enables flexible motion, as opposed to the GuRoo, who has only three orthogonal actuators. Ball joints are also present in human hips and shoulders and allow high mobility actuated form a small volume. Due to the nature of the actuators used, ball joints were difficult to implement. Instead, multiple degrees of freedom have been achieved with small sequential links. All degrees of freedom are orthogonal when the robot is in a standing position.

Technical specifications
DOF
  • 6 in each leg
  • 3 in each arm
  • 3 in waist
  • 2 in neck
BatteryLithium Ion, 42V and 7.2V
Sensors
  • 1 X Inertial Measurement Unit
  • 2 X Cameras (640x480 @ 80fps)
  • 23 Joint encoders
  • 8 x Capacitive force sensors
CPUVIA C3 1.2 GHz
Display7" LCD touch screen

Name's origin

It is a tradition of all University of Queensland robotic soccer team to suffix -roo on their name, over the years there have been RoboRoos, ViperRoos and CrocaRoos. GuRoo stands for "Grossly Underfunded Roo" a reference to the small budget of the project.

Dimensions

Related Research Articles

<span class="mw-page-title-main">Humanoid robot</span> Body shape similar to a human

A humanoid robot is a robot resembling the human body in shape. The design may be for functional purposes, such as interacting with human tools and environments, for experimental purposes, such as the study of bipedal locomotion, or for other purposes. In general, humanoid robots have a torso, a head, two arms, and two legs, though some humanoid robots may replicate only part of the body. Androids are humanoid robots built to aesthetically resemble humans.

An actuator is a component of a machine that produces force, torque, or displacement, when an electrical, pneumatic or hydraulic input is supplied to it in a system. The effect is usually produced in a controlled way. An actuator translates such an input signal into the required form of mechanical energy. It is a type of transducer. In simple terms, it is a "mover".

<span class="mw-page-title-main">Synchro</span> Variable transformers used in control systems

A synchro is, in effect, a transformer whose primary-to-secondary coupling may be varied by physically changing the relative orientation of the two windings. Synchros are often used for measuring the angle of a rotating machine such as an antenna platform or transmitting rotation. In its general physical construction, it is much like an electric motor. The primary winding of the transformer, fixed to the rotor, is excited by an alternating current, which by electromagnetic induction causes voltages to appear between the Y-connected secondary windings fixed at 120 degrees to each other on the stator. The voltages are measured and used to determine the angle of the rotor relative to the stator.

Domo is an experimental robot made by the Massachusetts Institute of Technology designed to interact with humans. The brainchild of Jeff Weber and Aaron Edsinger, cofounders of Meka Robotics, its name comes from the Japanese phrase for "thank you very much", domo arigato, as well as the Styx song, "Mr. Roboto". The Domo project was originally funded by NASA, and has now been joined by Toyota in funding robot's development.

<span class="mw-page-title-main">Servomotor</span> Type of motor

A servomotor is a rotary or linear actuator that allows for precise control of angular or linear position, velocity, and acceleration in a mechanical system. It constitutes part of a servomechanism, and consists of a suitable motor coupled to a sensor for position feedback and a controller.

SIGMO is a humanoid robot designed to demonstrate the applications of passive dynamics technologies.

<span class="mw-page-title-main">Robot kit</span> Construction kit for building robots

A robot kit is a special construction kit for building robots, especially autonomous mobile robots.

iCub Open source robotics humanoid robot testbed

iCub is a one meter tall open source robotics humanoid robot testbed for research into human cognition and artificial intelligence.

Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots. Robotics is related to the sciences of electronics, engineering, mechanics, and software. The word "robot" was introduced to the public by Czech writer Karel Čapek in his play R.U.R., published in 1920. The term "robotics" was coined by Isaac Asimov in his 1941 science fiction short-story "Liar!"

Coco is the latest platform at the Massachusetts Institute of Technology's Humanoid Robotics Group, and a successor to Cog. Unlike previous platforms, Coco is built along more ape-like lines, rather than human. Coco is also notable for being mobile. Although there is ongoing research on the robot, the group has many robots dealing with human interactions. The Humanoid Robotics Group has planned to add more useful functions in the future, but have not set an exact date for such project.

Electromagnetic brakes or EM brakes are used to slow or stop vehicles using electromagnetic force to apply mechanical resistance (friction). They were originally called electro-mechanical brakes but over the years the name changed to "electromagnetic brakes", referring to their actuation method which is generally unrelated to modern electro-mechanical brakes. Since becoming popular in the mid-20th century, especially in trains and trams, the variety of applications and brake designs has increased dramatically, but the basic operation remains the same.

<span class="mw-page-title-main">AnyKode Marilou</span> Software

anyKode Marilou is a modeling and simulation environment for mobile robots, humanoids, articulated arms and parallel robots operating in real-world conditions that respect the laws of physics. This robotics suite is used in research centers and industry for various projects like humanoid architectures, wheeled and multi legged vehicles, and multi-robot systems (Multi-agents).

<span class="mw-page-title-main">Glossary of robotics</span> List of definitions of terms and concepts commonly used in the study of robotics

Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots. Robotics is related to the sciences of electronics, engineering, mechanics, and software.

<span class="mw-page-title-main">Robotics</span> Design, construction, use, and application of robots

Robotics is the interdisciplinary study and practice of the design, construction, operation, and use of robots.

The following outline is provided as an overview of and topical guide to robotics:

<span class="mw-page-title-main">Powered exoskeleton</span> Wearable machine meant to enhance a persons strength and mobility

A powered exoskeleton is a mobile machine wearable over all or part of the human body, providing ergonomic structural support, and powered by a system of electric motors, pneumatics, levers, hydraulics or a combination of cybernetic technologies, allowing for sufficient limb movement, and providing increased strength, protection and endurance.

<span class="mw-page-title-main">Rotary actuator</span> AE motor

A rotary actuator is an actuator that produces a rotary motion or torque.

<span class="mw-page-title-main">Servo (radio control)</span> Servomotor or other type of actuator used for radio control and small-scale robotics

Servos are small, cheap, mass-produced servomotors or other actuators used for radio control and small-scale robotics.

<span class="mw-page-title-main">Proportional myoelectric control</span>

Proportional myoelectric control can be used to activate robotic lower limb exoskeletons. A proportional myoelectric control system utilizes a microcontroller or computer that inputs electromyography (EMG) signals from sensors on the leg muscle(s) and then activates the corresponding joint actuator(s) proportionally to the EMG signal.

The term “soft robots” designs a broad class of robotic systems whose architecture includes soft elements, with much higher elasticity than traditional rigid robots. Articulated Soft Robots are robots with both soft and rigid parts, inspired to the muscloloskeletal system of vertebrate animals – from reptiles to birds to mammalians to humans. Compliance is typically concentrated in actuators, transmission and joints while structural stability is provided by rigid or semi-rigid links.

References

  1. Barnes, Nick; Zalensky, Alexander (30 June 2008). "A National Perspective on the Needs, Themes, and Major Groups - Robotics Research in Australia". IEEE Robotics & Automation Magazine. 15 (2): 89–95. doi:10.1109/M-RA.2007.907353 . Retrieved 21 November 2024.
  2. Wyeth, Gordon; Kee, Damien; Wagstaff, Mark; Stirzaker, Jared; Cartwright, Timothy; Bebel, Bartek (2001). "Design of an Autonomous Humanoid Robot" (PDF). Proceedings of the 2001 Australian Conference on Robotics and Automation: 44–49. Retrieved 21 November 2024.