CD/DVD copy protection is a blanket term for various methods of copy protection for CDs and DVDs. Such methods include DRM, CD-checks, Dummy Files, illegal tables of contents, over-sizing or over-burning the CD, physical errors and bad sectors. Many protection schemes rely on breaking compliance with CD and DVD standards, leading to playback problems on some devices.
Protection schemes rely on distinctive features that:
Most CD-ROMs use the ISO9660 file system to organize the available storage space for use by a computer or player. This has the effect of establishing directories (i.e., folders) and files within those directories. Usually, the filesystem is modified to use extensions intended to overcome limitations in the ISO9660 filesystem design. These include Joliet, RockRidge, and El Torito extensions. These are, however, compatible additions to the underlying ISO9660 structure, not complete replacements or modifications. The most basic approach for a distinctive feature is to purposely fake some information within the filesystem. Early generations of software copied every single file one by one from the original medium and re-created a new filesystem on the target medium.
A sector is the primary data structure on a CD-ROM accessible to external software (including the OS). On a Mode-1 CD-ROM, each sector contains 2048 bytes of user-data (content) and 304 bytes of structural information. Among other things, the structural information consists of
Using the EDC and ECC information, the drive can detect and repair many (but not all) types of read-error.
Copy protections can use these fields as a distinctive feature by purposely crafting sectors with improper EDC/ECC fields during manufacture. The protection software tries to read those sectors, awaiting read-errors. As early generations of end-user soft/hardware were not able to generate sectors with illegal structural information, this feature could not be re-generated with such soft/hardware. If the sectors forming the distinctive feature have become readable, the medium is presumed to be a copy.
A modification of this approach uses large regions of unreadable sectors with small islands of readable ones interspersed. Most software trying to copy protected media will skip intervals of sectors when confronted with unreadable ones, expecting them all to be bad. In contrast to the original approach, the protection scheme expects the sectors to be readable, supposing the medium to be a copy when read-errors occur.
Beside the main-channel which holds all of the user-data, a CD-ROM contains a set of eight sub-channels where certain meta-information can be stored. (For an audio CD, the user-data is the audio itself; for a data CD, it is the filesystem and file data.) One of the sub-channels — the Q-channel — states the drive's current position relative to the beginning of the CD and the current track. This was designed for Audio-CDs (which for a few years were the only CDs), where this information is used to keep the drive on track; nevertheless the Q-channel is filled even on Data-CDs. Another sub-channel, the P-channel (which is the first of the subchannels) carries even more primitive information—a sort of semaphore—indicating the points where each track starts.
As every Q-channel field contains a 16-bit checksum over its content, copy protection can yet again use this field to distinguish between an original medium and a copy. Early generations of end-user soft/hardware calculated the Q-channel by themselves, not expecting them to carry any valuable information.
Modern software and hardware are able to write any information given into the subchannels Q and P.
This technique exploits the way the sectors on a CD-ROM are addressed and how the drive seeks from one sector to another. On every CD-ROM the sectors state their logical absolute and relative position in the corresponding sector-headers. The drive can use this information when it is told to retrieve or seek to a certain sector. Note that such information is not physically "hard-wired" into the CD-ROM itself but part of user-controlled data.
A part of an unprotected CD-ROM may look like this (simplified):
Sector's logical address | ... | 6551 | 6552 | 6553 | 6554 | 6555 | 6556 | 6557 | ... |
---|---|---|---|---|---|---|---|---|---|
Sector's content | ... | Jack | and | Jill | went | up | the | hill | ... |
When the drive is told to read from or seek to sector 6553, it calculates the physical distance, moves the laser-diode and starts reading from the (spinning) disc, waiting for sector 6553 to come by.
A protected CD-ROM may look like this:
Sector's logical address | ... | 6551 | 6552 | 6553 | 6553 | 6554 | 6555 | 6556 | 6557 | ... |
---|---|---|---|---|---|---|---|---|---|---|
Sector's content | ... | Jack | and | Jill | Mary | went | up | the | hill | ... |
In this example, a sector was inserted ("Mary") with a sector-address identical to the one right before the insertion-point (6553). When the drive is told to read from or seek to sector 6553 on such a disc, the resulting sector-content depends on the position the drive starts seeking from.
A protected program can check whether the CD-ROM is original by positioning the drive behind sector 6553 and then reading from it — expecting the Mary version to appear. When a program tries to copy such a CD-ROM, it will miss the twin-sector as the drive skips the second 6553-sector, seeking for sector 6554.
There are more details about this technique (e.g. the twin-sectors need to be recorded in large extents, the SubQ-channel has to be modified etc.) that were omitted. If the twin sectors are right next to each other as shown, the reader would always read the first one, Jill; the twin sectors need to be farther apart on the disc.
Stamped CDs are perfect clones and have the data always at the same position, whereas writable media differ from each other. Data Position Measurement (DPM) detects these little physical differences to efficiently protect against duplicates. DPM was first used publicly in 1996 by Link Data Security's CD-Cops. SecuROM 4 and later uses this protection method, as do Nintendo optical discs.[ citation needed ]
The Red Book CD-DA audio specification does not include any copy protection mechanism other than a simple anti-copy flag. Starting in early 2002, attempts were made by record companies to market "copy-protected" non-standard compact discs. Philips stated that such discs were not permitted to bear the trademarked Compact Disc Digital Audio logo because they violate the Red Book specification. There was great public outcry over copy-protected discs because many saw it as a threat to fair use. For example, audio tracks on such media cannot be easily added to a personal music collection on a computer's hard disk or a portable (non-CD) music player. Also, many ordinary CD audio players (e.g. in car radios) had problems playing copy-protected media, mostly because they used hardware and firmware components also used in CD-ROM drives. The reason for this reuse is cost efficiency; the components meet the Red Book standard, so no valid reason existed not to use them. Other car stereos that supported CD-ROM discs containing compressed audio files (such as MP3, FLAC, or Windows Media) had to use some CD-ROM drive hardware (meeting the Yellow Book CD-ROM standard) in order to be capable of reading those discs.
In late 2005, Sony BMG Music sparked the Sony CD copy protection scandal when it included a form of copy protection called Extended Copy Protection ("XCP") on discs from 52 artists. [1] Upon inserting such a disc in the CD drive of a computer running Microsoft Windows, the XCP software would be installed. If CD ripper software (or other software, such as a real-time effects program, that reads digital audio from the disc in the same way as a CD ripper) were to subsequently access the music tracks on the CD, XCP would substitute white noise for the audio on the disc.
Technically inclined users and computer security professionals found that XCP contains a rootkit component. After installation, XCP went to great lengths to disguise its existence, and it even attempted to disable the computer's CD drive if XCP was forcibly removed. XCP's efforts to cloak itself unfortunately allowed writers of malware to amplify the damage done by their software, hiding the malware under XCP's cloak if XCP had been installed on the victim's machine. Several publishers of antivirus and anti-spyware software updated their products to detect and remove XCP if found, on the grounds that it is a trojan horse or other malware; and an assistant secretary for the United States' Department of Homeland Security chastised companies that would cause security holes on customers' computers, reminding the companies that they do not own the computers.
Facing resentment and class action lawsuits [2] Sony BMG issued a product recall for all discs including XCP, and announced it was suspending use of XCP on future discs. On November 21, 2005 the Texas Attorney General Greg Abbott sued Sony BMG for XCP [3] and on December 21, 2005 sued Sony BMG for MediaMax copy protection. [4]
The provisions of law allow for redress to buyers of Audio CDs with Copyright-Protection. The Copyright, Designs and Patents Act 1988 contains provisions in section 296ZE part VII that allow for "[a] remedy where effective technological measures prevent permitted acts".
In practice, the consumer would make a complaint to the copyright holder of the Audio CD, usually a Record Label. The complaint would contain a request to the holder of the copyright to provide a "work-around" in order to make use of the copy-protected CD, to the extent that a non-copyright protected CD could be used lawfully. Where the consumer believes the copyright holder has not been reasonable in entertaining the request, they are within their rights under the Act to make an application to the Secretary of State to review the merits of the complaint and (if the complaint is upheld) to instruct the copyright holder to implement a work-around circumventing the copyright protection.
Schedule 5A of the Copyright, Designs and Patent Act 1988 lists the permitted acts, to which the provisions of section 296ZE apply (i.e. lists the cases in which the consumer can use the remedy, if the copy protection prevents the user doing a permitted act).
The compact disc (CD) is a digital optical disc data storage format that was co-developed by Philips and Sony to store and play digital audio recordings. In August 1982, the first compact disc was manufactured. It was then released in October 1982 in Japan and branded as Digital Audio Compact Disc.
CD-R is a digital optical disc storage format. A CD-R disc is a compact disc that can be written once and read arbitrarily many times.
Compact Disc Digital Audio, also known as Digital Audio Compact Disc or simply as Audio CD, is the standard format for audio compact discs. The standard is defined in the Red Book, one of a series of Rainbow Books that contain the technical specifications for all CD formats.
Video CD is a home video format and the first format for distributing films on standard 120 mm (4.7 in) optical discs. The format was widely adopted in Southeast Asia, South Asia, East Asia, Central Asia and West Asia, superseding the VHS and Betamax systems in the regions until DVD-Video finally became affordable in the first decade of the 21st century.
A CD ripper, CD grabber, or CD extractor is software that rips raw digital audio in Compact Disc Digital Audio (CD-DA) format tracks on a compact disc to standard computer sound files, such as WAV or MP3.
A DVD player is a device that plays DVDs produced under both the DVD-Video and DVD-Audio technical standards, two different and incompatible standards. Some DVD players will also play audio CDs. DVD players are connected to a television to watch the DVD content, which could be a movie, a recorded TV show, or other content.
A live CD is a complete bootable computer installation including operating system which runs directly from a CD-ROM or similar storage device into a computer's memory, rather than loading from a hard disk drive. A live CD allows users to run an operating system for any purpose without installing it or making any changes to the computer's configuration. Live CDs can run on a computer without secondary storage, such as a hard disk drive, or with a corrupted hard disk drive or file system, allowing data recovery.
An optical disc image is a disk image that contains everything that would be written to an optical disc, disk sector by disc sector, including the optical disc file system. ISO images contain the binary image of an optical media file system, including the data in its files in binary format, copied exactly as they were stored on the disc. The data inside the ISO image will be structured according to the file system that was used on the optical disc from which it was created.
Optical disc authoring, including CD, DVD, and Blu-ray Disc authoring, is the process of assembling source material—video, audio or other data—into the proper logical volume format to then be recorded ("burned") onto an optical disc. This act is sometimes done illegally, by pirating copyrighted material without permission from the original artists.
Copy Control was the generic name of a copy prevention system, used from 2001 until 2006 on several digital audio disc releases by EMI Group and Sony BMG Music Entertainment in several regions. It should not be confused with the CopyControl computer software copy protection system introduced by Microcosm Ltd in 1989.
GD-ROM is a proprietary optical disc format originally used for the Dreamcast video game console, as well as its arcade counterpart, the Sega NAOMI and select Triforce arcade board titles. It was developed by Yamaha to curb piracy common to standard CDs and to offer increased storage capacity without the expense of the fledgling DVD-ROM. It is similar to the standard CD-ROM except that the pits on the disc are packed more closely together, resulting in a higher storage capacity of 1 gigabyte, a 42% increase over a conventional CD's capacity of 700 megabytes.
MediaMax CD-3 is a software package created by SunnComm which was sold as a form of copy protection for compact discs. It was used by the record label RCA Records/BMG, and targets both Microsoft Windows and Mac OS X. Elected officials and computer security experts regard the software as a form of malware since its purpose is to intercept and inhibit normal computer operation without the user's authorization. MediaMax received media attention in late 2005 in fallout from the Sony XCP copy protection scandal.
In computing, data recovery is a process of retrieving deleted, inaccessible, lost, corrupted, damaged, or formatted data from secondary storage, removable media or files, when the data stored in them cannot be accessed in a usual way. The data is most often salvaged from storage media such as internal or external hard disk drives (HDDs), solid-state drives (SSDs), USB flash drives, magnetic tapes, CDs, DVDs, RAID subsystems, and other electronic devices. Recovery may be required due to physical damage to the storage devices or logical damage to the file system that prevents it from being mounted by the host operating system (OS).
Extended Copy Protection (XCP) is a software package developed by the British company First 4 Internet and sold as a copy protection or digital rights management (DRM) scheme for Compact Discs. It was used on some CDs distributed by Sony BMG and sparked the 2005 Sony BMG CD copy protection scandal; in that context it is also known as the Sony rootkit.
The Sony BMG CD copy protection scandal concerns the copy protection measures included by Sony BMG on compact discs in 2005. When inserted into a computer, the CDs installed one of two pieces of software that provided a form of digital rights management (DRM) by modifying the operating system to interfere with CD copying. Neither program could easily be uninstalled, and they created vulnerabilities that were exploited by unrelated malware. One of the programs would install and "phone home" with reports on the user's private listening habits, even if the user refused its end-user license agreement (EULA), while the other was not mentioned in the EULA at all. Both programs contained code from several pieces of copylefted free software in an apparent infringement of copyright, and configured the operating system to hide the software's existence, leading to both programs being classified as rootkits.
Cactus Data Shield (CDS) is a form of CD/DVD copy protection for audio compact discs developed by Israeli company Midbar Technologies. It has been used extensively by EMI, BMG and their subsidiaries. CDS relies on two components: Erroneous Disc Navigation and Data Corruption.
Subcode or subchannel data refers to data contained in a compact disc (CD) in addition to digital audio or user data, which is used for control and playback of the CD. The original specification was defined in the Red Book standard for CD Digital Audio, though further specifications have extended their use.
The preservation of optical media is essential because it is a resource in libraries, and stores audio, video, and computer data to be accessed by patrons. While optical discs are generally more reliable and durable than older media types, environmental conditions and/or poor handling can result in lost information.
A CD-ROM is a type of read-only memory consisting of a pre-pressed optical compact disc that contains data. Computers can read—but not write or erase—CD-ROMs. Some CDs, called enhanced CDs, hold both computer data and audio with the latter capable of being played on a CD player, while data is only usable on a computer.
{{cite web}}
: CS1 maint: archived copy as title (link)