Computational methods for free surface flow

Last updated

In physics, a free surface flow is the surface of a fluid flowing that is subjected to both zero perpendicular normal stress and parallel shear stress. This can be the boundary between two homogeneous fluids, like water in an open container and the air in the Earth's atmosphere that form a boundary at the open face of the container.

Contents

Computation of free surfaces is complex because of the continuous change in the location of the boundary layer. Conventional methods of computation are insufficient for such analysis. Therefore, special methods are developed for the computation of free surface flows.

Introduction

Computation in flows with free and moving boundaries like the open-channel flow is a difficult task. The position of the boundary is known only at the initial time and its location at later times can be determined as using various methods like the Interface Tracking Method and the Interface Capturing Method.

Boundary conditions

Neglecting the phase change at the free surface, the following boundary conditions apply.

Kinematic condition

The free surface should be a sharp boundary separating the two fluids. There should be no flow through this boundary, i.e.,

or

where the subscript stands for free surface. This implies that the normal component of the velocity of the fluid at the surface is equal to the normal component of the velocity of the free surface.

Dynamic condition

The forces acting on the fluid at free surface should be in equilibrium, i.e. the momentum is conserved at the free surface. The normal forces on either side of the free surface are equal and opposite in direction and the forces in tangential direction should be equal in magnitude and direction.

Here σ is the surface tension, n, t and s are unit vectors in a local orthogonal coordinate system (n,t,s) at the free surface (n is outward normal to the free surface while the other two lie in the tangential plane and are mutually orthogonal). The indices 'l' and 'g' denote liquid and gas, respectively and K is the curvature of the free surface.

with Rt and Rs being radii of curvature along coordinates t and s.

The surface tension σ is force per unit length of a surface element and acts tangential to the free surface.

For an infinitesimally small surface element dS, the tangential components of the surface tension forces cancel out when σ = constant, and the normal component can be expressed as a local force that results in a pressure jump across the surface.

Methods of computation

Interface tracking method

This is a method that treats the free surface as a sharp interface whose motion is followed. In this method, boundary-fitted grids are used and advanced each time the free surface is moved.
Interface tracking method is useful in situations like calculation of flow around submerged bodies. This is done by making an unperturbed free surface linear, so a height function is introduced for the free surface elevation relative to its unperturbed state.

This gives the kinematic boundary condition a new form:

This equation can be integrated and the fluid velocity at free surface can be obtained either by extrapolation from the interior or by using dynamic boundary condition. For the calculation of flow, FV method is widely used. The steps for a fully conservative FV method of this type are:

The main problem with the algorithm in this procedure is that there is only one equation for one cell but large number of grid nodes moving. To avoid instability and wave reflection, the method is modified as follows:
From the previous steps, we can calculate the volume of fluid to be flowed in or out of the CV to have mass conservation. To obtain the coordinates of CV vertices at free surface, we have more unknowns and less equations due to single volumetric flow rate for each cell.

Hence the CVs are defined by the cell face centers rather than vertices and vertices are obtained by interpolation. This gives a tridiagonal system for 2D and can be solved using TDMA method. For 3D, the system is block tridiagonal and is best solved by one of the iterative solvers.

Interface capturing method

In computation of two-fluid flows, in some cases the interface might be too complex to track while keeping the frequency of re-meshing at an acceptable level. Not being able to reduce the frequency of re-meshing in 3D might introduce overwhelming mesh generation and projection costs, making the computations with the interface-tracking technique no longer feasible. In such cases, interface-capturing techniques, which do not normally require costly mesh update steps, could be used with the understanding that the interface will not be represented as accurately as we would have with an interface-tracking technique. [2] Methods which do not define the interface as sharp boundary. A fixed grid extends beyond the free surface over which the computation is performed. To determine the shape of the free surface, the fraction of each cell near the interface is computed that is partially filled.

Marker-and-cell or MAC Scheme

MAC scheme was proposed by Harlow and Welch in 1965. In this method, a mass-less particle is introduced at the initial time at the free surface. The motion of this mass-less particle is followed with the passage of time.

Benefit: This scheme can treat complex phenomena like wave breaking.

Drawback: In three dimensional flow solving the equations governing fluid flow and also following the motion of a large number of markers both simultaneously demands high computational power.

Volume-of-fluid or VOF scheme

VOF scheme was proposed by Hirt and Nichols in 1981. In this method, fraction of the cell occupied by the liquid phase can be calculated by solving the transport equation. [3] The transport equation is:

∂c/∂t + div(cv) = 0

where c is the fraction of control volume filled. c=1 for completely filled and c = 0 for completely empty control volumes.
So in total, for VOF method, one has to solve three forms of equations, conservation equations for mass, conservation equations for momentum, equation for filled fraction for each control volume.

NOTE: IN INCOMPRESSIBLE FLOWS, ABOVE EQUATION GIVES SAME RESULTS WITH c AND 1 - c MAKING THE ENFORCEMENT OF MASS CONSERVATION A MUST.

Since the higher order schemes are preferred over lower order schemes to prevent artificial mixing of the two fluids, it is important to prevent the overshoots and undershoots due to the condition 0 ≤ c ≤ 1. For such problems, modifications were made to MAC and VOF schemes.

Modifications to MAC and VOF scheme

Marker and micro-cell method in which local grid refinement is done according to the following criteria:

only the cells having 0 < c < 1 are refined.

This method is more efficient than MAC scheme because only the cells at the boundary are refined. But in this method, the free surface profile is not sharply defined.

Hybrid methods

There are some fluid flows which do not come under either of the category, for example, bubbly flows. For the computation of such two-phase flows which do not come under any of the above discussed categories, elements are borrowed from both surface-capturing and surface-tracking methods. Such methods are called hybrid methods. In this method, fluid properties are smeared over a fixed number of grid points normal to the interface. Now, as in interface capturing method, both fluids are treated as single fluid with variable properties. Interface is also tracked as in interface-tracking method to prevent it from smearing by moving the marker particles using the velocity field generated by the flow solver. marker particles are added and removed to maintain the accuracy by keeping the approximate spacing between them equal.

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes).

<span class="mw-page-title-main">Gravity wave</span> Wave in or at the interface between fluids where gravity is the main equilibrium force

In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere and the ocean, which gives rise to wind waves.

In 1851, George Gabriel Stokes derived an expression, now known as Stokes' law, for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. Stokes' law is derived by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

<span class="mw-page-title-main">Computational fluid dynamics</span> Analysis and solving of problems that involve fluid flows

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.

<span class="mw-page-title-main">Level-set method</span>

Level-set methods (LSM) are a conceptual framework for using level sets as a tool for numerical analysis of surfaces and shapes. The advantage of the level-set model is that one can perform numerical computations involving curves and surfaces on a fixed Cartesian grid without having to parameterize these objects. Also, the level-set method makes it very easy to follow shapes that change topology, for example, when a shape splits in two, develops holes, or the reverse of these operations. All these make the level-set method a great tool for modeling time-varying objects, like inflation of an airbag, or a drop of oil floating in water.

<span class="mw-page-title-main">Smoothed-particle hydrodynamics</span> Method of hydrodynamics simulation

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.

<span class="mw-page-title-main">Stokes flow</span> Type of fluid flow

Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature this type of flow occurs in the swimming of microorganisms and sperm. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.

Fluid mechanics is the branch of physics concerned with the mechanics of fluids and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical and biomedical engineering, geophysics, oceanography, meteorology, astrophysics, and biology.

<span class="mw-page-title-main">Lattice Boltzmann methods</span> Class of computational fluid dynamics methods

The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.

The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.

Pressure-correction method is a class of methods used in computational fluid dynamics for numerically solving the Navier-Stokes equations normally for incompressible flows.

In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces.

<span class="mw-page-title-main">Volume of fluid method</span> Free-surface modelling technique

In computational fluid dynamics, the volume of fluid (VOF) method is a free-surface modelling technique, i.e. a numerical technique for tracking and locating the free surface. It belongs to the class of Eulerian methods which are characterized by a mesh that is either stationary or is moving in a certain prescribed manner to accommodate the evolving shape of the interface. As such, VOF is an advection scheme—a numerical recipe that allows the programmer to track the shape and position of the interface, but it is not a standalone flow solving algorithm. The Navier–Stokes equations describing the motion of the flow have to be solved separately. The same applies for all other advection algorithms.

In fluid dynamics, aerodynamic potential flow codes or panel codes are used to determine the fluid velocity, and subsequently the pressure distribution, on an object. This may be a simple two-dimensional object, such as a circle or wing, or it may be a three-dimensional vehicle.

In computational fluid dynamics, the immersed boundary method originally referred to an approach developed by Charles Peskin in 1972 to simulate fluid-structure (fiber) interactions. Treating the coupling of the structure deformations and the fluid flow poses a number of challenging problems for numerical simulations. In the immersed boundary method the fluid is represented in an Eulerian coordinate system and the structure is represented in Lagrangian coordinates. For Newtonian fluids governed by the Navier–Stokes equations, the fluid equations are

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

The bidomain model is a mathematical model to define the electrical activity of the heart. It consists in a continuum (volume-average) approach in which the cardiac microstructure is defined in terms of muscle fibers grouped in sheets, creating a complex three-dimensional structure with anisotropical properties. Then, to define the electrical activity, two interpenetrating domains are considered, which are the intracellular and extracellular domains, representing respectively the space inside the cells and the region between them.

Vorticity confinement (VC), a physics-based computational fluid dynamics model analogous to shock capturing methods, was invented by Dr. John Steinhoff, professor at the University of Tennessee Space Institute, in the late 1980s to solve vortex dominated flows. It was first formulated to capture concentrated vortices shed from the wings, and later became popular in a wide range of research areas. During the 1990s and 2000s, it became widely used in the field of engineering.

In physics, the first law of thermodynamics is an expression of the conservation of total energy of a system. The increase of the energy of a system is equal to the sum of work done on the system and the heat added to that system:

<span class="mw-page-title-main">Forward problem of electrocardiology</span>

The forward problem of electrocardiology is a computational and mathematical approach to study the electrical activity of the heart through the body surface. The principal aim of this study is to computationally reproduce an electrocardiogram (ECG), which has important clinical relevance to define cardiac pathologies such as ischemia and infarction, or to test pharmaceutical intervention. Given their important functionalities and the relative small invasiveness, the electrocardiography techniques are used quite often as clinical diagnostic tests. Thus, it is natural to proceed to computationally reproduce an ECG, which means to mathematically model the cardiac behaviour inside the body.

References

  1. Ferziger, Joel H., and Milovan Perić. Computational methods for fluid dynamics. Vol. 3. Berlin: Springer, 2002.
  2. Tezduyar, T. "Interface-tracking and interface-capturing techniques for computation of moving boundaries and interfaces." Proceedings of the 6th World Congress on Computational Mechanics, On-line publication: http://wccm%5B%5D. tuwien. ac. at/, Paper-ID. Vol. 81513. 2002.
  3. Hirt, C.W.; Nichols, B.D. (1981), Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics 39 (1): 201–225, Bibcode : 1981JCoPh..39..201H, doi : 10.1016/0021-9991(81)90145-5