Continuous game

Last updated

A continuous game is a mathematical concept, used in game theory, that generalizes the idea of an ordinary game like tic-tac-toe (noughts and crosses) or checkers (draughts). In other words, it extends the notion of a discrete game, where the players choose from a finite set of pure strategies. The continuous game concepts allows games to include more general sets of pure strategies, which may be uncountably infinite.

Contents

In general, a game with uncountably infinite strategy sets will not necessarily have a Nash equilibrium solution. If, however, the strategy sets are required to be compact and the utility functions continuous, then a Nash equilibrium will be guaranteed; this is by Glicksberg's generalization of the Kakutani fixed point theorem. The class of continuous games is for this reason usually defined and studied as a subset of the larger class of infinite games (i.e. games with infinite strategy sets) in which the strategy sets are compact and the utility functions continuous.

Formal definition

Define the n-player continuous game where

is the set of players,
where each is a compact set, in a metric space, corresponding to the th player's set of pure strategies,
where is the utility function of player
We define to be the set of Borel probability measures on , giving us the mixed strategy space of player i.
Define the strategy profile where

Let be a strategy profile of all players except for player . As with discrete games, we can define a best response correspondence for player , . is a relation from the set of all probability distributions over opponent player profiles to a set of player 's strategies, such that each element of

is a best response to . Define

.

A strategy profile is a Nash equilibrium if and only if The existence of a Nash equilibrium for any continuous game with continuous utility functions can be proven using Irving Glicksberg's generalization of the Kakutani fixed point theorem. [1] In general, there may not be a solution if we allow strategy spaces, 's which are not compact, or if we allow non-continuous utility functions.

Separable games

A separable game is a continuous game where, for any i, the utility function can be expressed in the sum-of-products form:

, where , , , and the functions are continuous.

A polynomial game is a separable game where each is a compact interval on and each utility function can be written as a multivariate polynomial.

In general, mixed Nash equilibria of separable games are easier to compute than non-separable games as implied by the following theorem:

For any separable game there exists at least one Nash equilibrium where player i mixes at most pure strategies. [2]

Whereas an equilibrium strategy for a non-separable game may require an uncountably infinite support, a separable game is guaranteed to have at least one Nash equilibrium with finitely supported mixed strategies.

Examples

Separable games

A polynomial game

Consider a zero-sum 2-player game between players X and Y, with . Denote elements of and as and respectively. Define the utility functions where

.

The pure strategy best response relations are:

and do not intersect, so there is no pure strategy Nash equilibrium. However, there should be a mixed strategy equilibrium. To find it, express the expected value, as a linear combination of the first and second moments of the probability distributions of X and Y:

(where and similarly for Y).

The constraints on and (with similar constraints for y,) are given by Hausdorff as:

Each pair of constraints defines a compact convex subset in the plane. Since is linear, any extrema with respect to a player's first two moments will lie on the boundary of this subset. Player i's equilibrium strategy will lie on

Note that the first equation only permits mixtures of 0 and 1 whereas the second equation only permits pure strategies. Moreover, if the best response at a certain point to player i lies on , it will lie on the whole line, so that both 0 and 1 are a best response. simply gives the pure strategy , so will never give both 0 and 1. However gives both 0 and 1 when y = 1/2. A Nash equilibrium exists when:

This determines one unique equilibrium where Player X plays a random mixture of 0 for 1/2 of the time and 1 the other 1/2 of the time. Player Y plays the pure strategy of 1/2. The value of the game is 1/4.

Non-Separable Games

A rational payoff function

Consider a zero-sum 2-player game between players X and Y, with . Denote elements of and as and respectively. Define the utility functions where

This game has no pure strategy Nash equilibrium. It can be shown [3] that a unique mixed strategy Nash equilibrium exists with the following pair of probability density functions:

The value of the game is .

Requiring a Cantor distribution

Consider a zero-sum 2-player game between players X and Y, with . Denote elements of and as and respectively. Define the utility functions where

.

This game has a unique mixed strategy equilibrium where each player plays a mixed strategy with the Cantor singular function as the cumulative distribution function. [4]

Further reading

See also

Related Research Articles

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

In probability theory, the central limit theorem (CLT) establishes that, in many situations, for identically distributed independent samples, the standardized sample mean tends towards the standard normal distribution even if the original variables themselves are not normally distributed.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

In game theory, the Nash equilibrium, named after the mathematician John Nash, is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no one has anything to gain by changing only one's own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs.

<span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables each of which clusters around a mean value.

<span class="mw-page-title-main">Log-normal distribution</span> Probability distribution

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics).

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well.

<span class="mw-page-title-main">Covariance matrix</span> Measure of covariance of components of a random vector

In probability theory and statistics, a covariance matrix is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances.

In mathematics, Itô's lemma or Itô's formula is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment. The lemma is widely employed in mathematical finance, and its best known application is in the derivation of the Black–Scholes equation for option values.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.

In control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal that forces the system to "slide" along a cross-section of the system's normal behavior. The state-feedback control law is not a continuous function of time. Instead, it can switch from one continuous structure to another based on the current position in the state space. Hence, sliding mode control is a variable structure control method. The multiple control structures are designed so that trajectories always move toward an adjacent region with a different control structure, and so the ultimate trajectory will not exist entirely within one control structure. Instead, it will slide along the boundaries of the control structures. The motion of the system as it slides along these boundaries is called a sliding mode and the geometrical locus consisting of the boundaries is called the sliding (hyper)surface. In the context of modern control theory, any variable structure system, like a system under SMC, may be viewed as a special case of a hybrid dynamical system as the system both flows through a continuous state space but also moves through different discrete control modes.

In statistics, the Bhattacharyya distance measures the similarity of two probability distributions. It is closely related to the Bhattacharyya coefficient which is a measure of the amount of overlap between two statistical samples or populations.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In mathematics and economics, transportation theory or transport theory is a name given to the study of optimal transportation and allocation of resources. The problem was formalized by the French mathematician Gaspard Monge in 1781.

Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients and ultimately allowing the out-of-sample prediction of the regressandconditional on observed values of the regressors. The simplest and most widely used version of this model is the normal linear model, in which given is distributed Gaussian. In this model, and under a particular choice of prior probabilities for the parameters—so-called conjugate priors—the posterior can be found analytically. With more arbitrarily chosen priors, the posteriors generally have to be approximated.

In statistics, the multivariate t-distribution is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.

In probability theory and statistics, the negative multinomial distribution is a generalization of the negative binomial distribution (NB(x0, p)) to more than two outcomes.

In machine learning, the kernel embedding of distributions comprises a class of nonparametric methods in which a probability distribution is represented as an element of a reproducing kernel Hilbert space (RKHS). A generalization of the individual data-point feature mapping done in classical kernel methods, the embedding of distributions into infinite-dimensional feature spaces can preserve all of the statistical features of arbitrary distributions, while allowing one to compare and manipulate distributions using Hilbert space operations such as inner products, distances, projections, linear transformations, and spectral analysis. This learning framework is very general and can be applied to distributions over any space on which a sensible kernel function may be defined. For example, various kernels have been proposed for learning from data which are: vectors in , discrete classes/categories, strings, graphs/networks, images, time series, manifolds, dynamical systems, and other structured objects. The theory behind kernel embeddings of distributions has been primarily developed by Alex Smola, Le Song , Arthur Gretton, and Bernhard Schölkopf. A review of recent works on kernel embedding of distributions can be found in.

In the mathematical theory of probability, multivariate Laplace distributions are extensions of the Laplace distribution and the asymmetric Laplace distribution to multiple variables. The marginal distributions of symmetric multivariate Laplace distribution variables are Laplace distributions. The marginal distributions of asymmetric multivariate Laplace distribution variables are asymmetric Laplace distributions.

References

  1. I.L. Glicksberg. A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proceedings of the American Mathematical Society, 3(1):170–174, February 1952.
  2. N. Stein, A. Ozdaglar and P.A. Parrilo. "Separable and Low-Rank Continuous Games". International Journal of Game Theory, 37(4):475–504, December 2008. https://arxiv.org/abs/0707.3462
  3. Irving Leonard Glicksberg & Oliver Alfred Gross (1950). "Notes on Games over the Square." Kuhn, H.W. & Tucker, A.W. eds. Contributions to the Theory of Games: Volume II. Annals of Mathematics Studies 28, p.173–183. Princeton University Press.
  4. Gross, O. (1952). "A rational payoff characterization of the Cantor distribution." Technical Report D-1349, The RAND Corporation.