Cooke triplet

Last updated
Cooke triplet
Cooke.png
Introduced in1893
AuthorDennis Taylor
Construction3 elements in 3 groups
Aperturef/3.5 (early)
f/2.8 (rare-earth optical glass)

The Cooke triplet is a photographic lens designed and patented (patent number GB 22,607) in 1893 by Dennis Taylor who was employed as chief engineer by T. Cooke & Sons of York. It was the first lens system that allowed elimination of most of the optical distortion or aberration at the outer edge of lenses.[ citation needed ]

Contents

The Cooke triplet is noted for being able to correct the Seidel aberrations. [1] It is recognized as one of the most important objective designs in the field of photography. [2] [3]

The lens designed, invented by Dennis Taylor but named for the firm he worked for, consists of three separated lens elements. [2] It has two biconvex lenses on the outer and a biconcave lens in the middle. [2]

The design took a new approach to solving the optical design issues, and the design was presented to the Optical Society of London. [4]

Design

Cooke triplet Cooke triplet.JPG
Cooke triplet

A Cooke triplet comprises a negative flint glass element in the centre with a crown glass element on each side. In this design, the sum of all the curvatures times indices of refraction can be zero, so that the field of focus is flat (zero Petzval field curvature). In other words, the negative lens can be as strong as the outer two combined, when one measures in dioptres, yet the lens will converge light, because the rays strike the middle element close to the optic axis. The curvature of field is determined by the sum of the dioptres, but the focal length is not.

At the time, the Cooke triplet was a major advancement in lens design. It was superseded by later designs in high-end cameras, but is still widely used in inexpensive cameras, including variations using aspheric elements, particularly in cell-phone cameras.

The Cooke triplet consists of three separated lenses positioned at the finite distance. It is often considered that the triplet is one of the most important discoveries in the field of photographic objectives

The Cooke triplet optimizations (2002) [5]

The Cooke triplet can correct, with only three elements, for one wavelength, spherical aberration, coma, astigmatism, field curvature, and distortion. [3]

Application

The triplet soon became a standard in lens design still used with low-end cameras today. The main optical manufacturers often further developed the original Cooke triplet (e.g., the Zeiss Triotar) that were produced for many decades.

Binoculars as well as refracting telescopes often use triplets. The same holds for many projection lenses, e.g., for 35 mm slide projectors.

The Cooke triplet has provided the basis for additional designs, including a derivative with five lens elements. [6]

See also

Related Research Articles

Lens Optical device which transmits and refracts light

A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic, and are ground and polished or molded to a desired shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called lenses, such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

Camera lens Optical lens or assembly of lenses used with a camera to create images

A camera lens is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.

Tessar

The Tessar is a photographic lens design conceived by the German physicist Paul Rudolph in 1902 while he worked at the Zeiss optical company and patented by Zeiss in Germany; the lens type is usually known as the Zeiss Tessar.

Refracting telescope Type of optical telescope

A refracting telescope is a type of optical telescope that uses a lens as its objective to form an image. The refracting telescope design was originally used in spyglasses and astronomical telescopes but is also used for long-focus camera lenses. Although large refracting telescopes were very popular in the second half of the 19th century, for most research purposes, the refracting telescope has been superseded by the reflecting telescope, which allows larger apertures. A refractor's magnification is calculated by dividing the focal length of the objective lens by that of the eyepiece.

Reflecting telescope Telescopes which utilize curved mirrors to form an image

A reflecting telescope is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic aberration. Although reflecting telescopes produce other types of optical aberrations, it is a design that allows for very large diameter objectives. Almost all of the major telescopes used in astronomy research are reflectors. Reflecting telescopes come in many design variations and may employ extra optical elements to improve image quality or place the image in a mechanically advantageous position. Since reflecting telescopes use mirrors, the design is sometimes referred to as a catoptric telescope.

Zoom lens Lens with a variable focal length

A zoom lens is a mechanical assembly of lens elements for which the focal length can be varied, as opposed to a fixed-focal-length (FFL) lens.

Objective (optics)

In optical engineering, the objective is the optical element that gathers light from the object being observed and focuses the light rays to produce a real image. Objectives can be a single lens or mirror, or combinations of several optical elements. They are used in microscopes, binoculars, telescopes, cameras, slide projectors, CD players and many other optical instruments. Objectives are also called object lenses, object glasses, or objective glasses.

Apochromat

An apochromat, or apochromatic lens (apo), is a photographic or other lens that has better correction of chromatic and spherical aberration than the much more common achromat lenses.

Catadioptric system Optical system where refraction and reflection are combined

A catadioptric optical system is one where refraction and reflection are combined in an optical system, usually via lenses (dioptrics) and curved mirrors (catoptrics). Catadioptric combinations are used in focusing systems such as searchlights, headlamps, early lighthouse focusing systems, optical telescopes, microscopes, and telephoto lenses. Other optical systems that use lenses and mirrors are also referred to as "catadioptric", such as surveillance catadioptric sensors.

Doublet (lens)

In optics, a doublet is a type of lens made up of two simple lenses paired together. Such an arrangement allows more optical surfaces, thicknesses, and formulations, especially as the space between lenses may be considered an "element". With additional degrees of freedom, optical designers have more latitude to correct more optical aberrations more thoroughly.

Large format lens

Large format lenses are photographic optics that provide an image circle large enough to cover the large format film or plates used in large format cameras.

Aspheric lens Type of lens

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

Double-Gauss lens

The double Gauss lens is a compound lens used mostly in camera lenses that reduces optical aberrations over a large focal plane.

Optical lens design is the process of designing a lens to meet a set of performance requirements and constraints, including cost and manufacturing limitations. Parameters include surface profile types, as well as radius of curvature, distance to the next surface, material type and optionally tilt and decenter. The process is computationally intensive, using ray tracing or other techniques to model how the lens affects light that passes through it.

A dialyte lens is a compound lens design that corrects optical aberrations where the lens elements are widely air-spaced. The design is used to save on the amount of glass used for specific elements or where elements can not be cemented because they have dissimilar curvatures. The word dialyte means "parted", "loose" or "separated".

The design of photographic lenses for use in still or cine cameras is intended to produce a lens that yields the most acceptable rendition of the subject being photographed within a range of constraints that include cost, weight and materials. For many other optical devices such as telescopes, microscopes and theodolites where the visual image is observed but often not recorded the design can often be significantly simpler than is the case in a camera where every image is captured on film or image sensor and can be subject to detailed scrutiny at a later stage. Photographic lenses also include those used in enlargers and projectors.

Petzval field curvature Optical aberration

Petzval field curvature, named for Joseph Petzval, describes the optical aberration in which a flat object normal to the optical axis cannot be brought properly into focus on a flat image plane. Field curvature can be corrected with the use of a field flattener, designs can also incorporate a curved focal plane like in the case of the human eye in order to improve image quality at the focal surface.

History of photographic lens design

The invention of the camera in the early 19th century led to an array of lens designs intended for photography. The problems of photographic lens design, creating a lens for a task that would cover a large, flat image plane, were well known even before the invention of photography due to the development of lenses to work with the focal plane of the camera obscura.

References

  1. Kidger, Michael J. (2002). Fundamental Optical Design. SPIE Press. ISBN   9780819439154.
  2. 1 2 3 Vasiljevic, Darko (2012-12-06). Classical and Evolutionary Algorithms in the Optimization of Optical Systems. Springer Science & Business Media. ISBN   9781461510512.
  3. 1 2 Vasiljević, Darko (2002), "The Cooke triplet optimizations", in Vasiljević, Darko (ed.), Classical and Evolutionary Algorithms in the Optimization of Optical Systems, Springer US, pp. 187–211, doi:10.1007/978-1-4615-1051-2_13, ISBN   9781461510512
  4. Kingslake, Rudolf (1989-11-11). A History of the Photographic Lens. Academic Press. ISBN   9780124086401.
  5. Vasiljević, Darko (2002). "The Cooke triplet optimizations". Classical and Evolutionary Algorithms in the Optimization of Optical Systems. pp. 187–211. doi:10.1007/978-1-4615-1051-2_13. ISBN   978-1-4613-5370-6.
  6. Sharma, K. D. (1979-12-01). "Design of a new five-element Cooke triplet derivative". Applied Optics. 18 (23): 3933–3937. doi:10.1364/AO.18.003933. ISSN   1559-128X. PMID   20216728.