The core-matrix theory of thalamus, first proposed by Ted Jones in 1998, states that neurons in the thalamus belong to either a parvalbumin-immunopositive core of precisely projecting neurons, or to a calbindin-immunopositive matrix of diffusely and widely projecting neurons. [1] [2]
Neurons comprising the core are believed to be involved in propagation of 'driving' information, whereas neurons comprising the matrix are believed to play a more modulatory role. [3] : 1612 The cortical interactions of core neurons maintain content and enable perceptual constancy, whereas through reciprocal interactions with deep-layer cortical neurons, matrix neurons support wakefulness and determine perceptual thresholds. [3] : 1611
Among three calcium-binding proteins, only one thalamic nucleus is immunoreactive to only a single protein. That is the centromedian nucleus, which stains only for parvalbumin. Other regions usually stain for two of the three proteins—parvalbumin, calbindin, and calretinin.
Overall, the calcium-binding proteins show a complementary staining pattern in the human thalamus. In general terms, the highest density of parvalbumin stain is in the nuclei of the ventral nuclear group (i.e. in the ventral anterior, ventral lateral and ventral posterior nuclei) and in the medial and lateral geniculate nuclear groups. Moderate amounts of parvalbumin staining are also present in regions of the medio-dorsal nucleus (MD).
By contrast, calbindin and calretinin immunoreactivity show a similar distribution of dense staining in the rostral intralaminar nuclear group and in the patchy regions of the MD thalamus, which appears to complement the pattern of parvalbumin staining. However, calbindin and calretinin also show low levels of staining in the ventral nuclear group and in the medial and lateral geniculate bodies, which overlaps with the intense parvalbumin staining in these regions.
These results show that the calcium-binding proteins are heterogeneously distributed in a complementary fashion within the nuclei of the thalamus.
The primate thalamus consists of a matrix of calbindin immunoreactive cells and a superimposed core of parvalbumin immunoreactive cells, which may have differential patterns of cortical projections.
The thalamus is a large mass of gray matter on the lateral walls of the third ventricle forming the dorsal part of the diencephalon. Nerve fibers project out of the thalamus to the cerebral cortex in all directions, known as the thalamocortical radiations, allowing hub-like exchanges of information. It has several functions, such as the relaying of sensory and motor signals to the cerebral cortex and the regulation of consciousness, sleep, and alertness.
In neuroanatomy, the lateral geniculate nucleus is a structure in the thalamus and a key component of the mammalian visual pathway. It is a small, ovoid, ventral projection of the thalamus where the thalamus connects with the optic nerve. There are two LGNs, one on the left and another on the right side of the thalamus. In humans, both LGNs have six layers of neurons alternating with optic fibers.
The internal capsule is a paired white matter structure, as a two-way tract, carrying ascending and descending fibers, to and from the cerebral cortex. The internal capsule is situated in the inferomedial part of each cerebral hemisphere of the brain. It carries information past the subcortical basal ganglia. As it courses it separates the caudate nucleus and the thalamus from the putamen and the globus pallidus. It also separates the caudate nucleus and the putamen in the dorsal striatum, a brain region involved in motor and reward pathways.
In neuroanatomy, the pretectal area, or pretectum, is a midbrain structure composed of seven nuclei and comprises part of the subcortical visual system. Through reciprocal bilateral projections from the retina, it is involved primarily in mediating behavioral responses to acute changes in ambient light such as the pupillary light reflex, the optokinetic reflex, and temporary changes to the circadian rhythm. In addition to the pretectum's role in the visual system, the anterior pretectal nucleus has been found to mediate somatosensory and nociceptive information.
In neuroanatomy, thalamocortical radiations, also known as thalamocortical fibers, are the efferent fibers that project from the thalamus to distinct areas of the cerebral cortex. They form fiber bundles that emerge from the lateral surface of the thalamus.
The dentate nucleus is a cluster of neurons, or nerve cells, in the central nervous system that has a dentate – tooth-like or serrated – edge. It is located within the deep white matter of each cerebellar hemisphere, and it is the largest single structure linking the cerebellum to the rest of the brain. It is the largest and most lateral, or farthest from the midline, of the four pairs of deep cerebellar nuclei, the others being the globose and emboliform nuclei, which together are referred to as the interposed nucleus, and the fastigial nucleus.
The medial geniculate nucleus (MGN) or medial geniculate body (MGB) is part of the auditory thalamus and represents the thalamic relay between the inferior colliculus (IC) and the auditory cortex (AC). It is made up of a number of sub-nuclei that are distinguished by their neuronal morphology and density, by their afferent and efferent connections, and by the coding properties of their neurons. It is thought that the MGN influences the direction and maintenance of attention.
The subthalamus or ventral thalamus is a part of the diencephalon. Its most prominent structure is the subthalamic nucleus. The subthalamus connects to the globus pallidus, a subcortical nucleus of the basal ganglia.
The zona incerta (ZI) is a horizontally elongated small nucleus that separates the larger subthalamic nucleus from the thalamus. Its connections project extensively over the brain from the cerebral cortex down into the spinal cord.
The basal ganglia form a major brain system in all vertebrates, but in primates there are special differentiating features. The basal ganglia include the striatum, pallidus, substantia nigra and subthalamic nucleus. In primates the pallidus is divided into an external and internal globus pallidus, the external globus pallidus is present in other mammals but not the internal globus pallidus. Also in primates, the dorsal striatum is divided by a large nerve tract called the internal capsule into two masses named the caudate nucleus and the putamen. These differences contribute to a complex circuitry of connections between the striatum and cortex that is specific to primates, reflecting different functions in primate cortical areas.
The isothalamus is a division used by some researchers in describing the thalamus.
The ventral lateral nucleus (VL) is a nucleus in the ventral nuclear group of the thalamus.
The ventral posterolateral nucleus (VPL) is one of the subdivisions of the ventral posterior nucleus in the ventral nuclear group of the thalamus. It relays sensory information from the second-order neurons of the neospinothalamic tract and medial lemniscus which synapse with the third-order neurons in the nucleus. These then project to the primary somatosensory cortex in the postcentral gyrus.
The lateral nuclear group is a collection of nuclei on the lateral side of the thalamus. This nucleus group is one of the three regions of the thalamus which result from trisection by the Y-shaped internal medullary lamina.
Recurrent thalamo-cortical resonance or Thalamocortical oscillation is an observed phenomenon of oscillatory neural activity between the thalamus and various cortical regions of the brain. It is proposed by Rodolfo Llinas and others as a theory for the integration of sensory information into the whole of perception in the brain. Thalamocortical oscillation is proposed to be a mechanism of synchronization between different cortical regions of the brain, a process known as temporal binding. This is possible through the existence of thalamocortical networks, groupings of thalamic and cortical cells that exhibit oscillatory properties.
Dopaminergic cell groups, DA cell groups, or dopaminergic nuclei are collections of neurons in the central nervous system that synthesize the neurotransmitter dopamine. In the 1960s, dopaminergic neurons or dopamine neurons were first identified and named by Annica Dahlström and Kjell Fuxe, who used histochemical fluorescence. The subsequent discovery of genes encoding enzymes that synthesize dopamine, and transporters that incorporate dopamine into synaptic vesicles or reclaim it after synaptic release, enabled scientists to identify dopaminergic neurons by labeling gene or protein expression that is specific to these neurons.
The parabrachial nuclei, also known as the parabrachial complex, are a group of nuclei in the dorsolateral pons that surrounds the superior cerebellar peduncle as it enters the brainstem from the cerebellum. They are named from the Latin term for the superior cerebellar peduncle, the brachium conjunctivum. In the human brain, the expansion of the superior cerebellar peduncle expands the parabrachial nuclei, which form a thin strip of grey matter over most of the peduncle. The parabrachial nuclei are typically divided along the lines suggested by Baxter and Olszewski in humans, into a medial parabrachial nucleus and lateral parabrachial nucleus. These have in turn been subdivided into a dozen subnuclei: the superior, dorsal, ventral, internal, external and extreme lateral subnuclei; the lateral crescent and subparabrachial nucleus along the ventrolateral margin of the lateral parabrachial complex; and the medial and external medial subnuclei
The dorsal tegmental nucleus (DTN), also known as dorsal tegmental nucleus of Gudden, is a group of neurons located in the brainstem, which are involved in spatial navigation and orientation.