Cotton gin

Last updated

A model of a 19th-century cotton gin on display at the Eli Whitney Museum in Hamden, Connecticut Cotton gin EWM 2007.jpg
A model of a 19th-century cotton gin on display at the Eli Whitney Museum in Hamden, Connecticut

A cotton gin meaning "cotton engine" is a machine that quickly and easily separates cotton fibers from their seeds, enabling much greater productivity than manual cotton separation. [1] The fibers are then processed into various cotton goods such as calico, while any undamaged cotton is used largely for textiles like clothing. The separated seeds may be used to grow more cotton or to produce cottonseed oil.


Handheld roller gins had been used in the Indian subcontinent since at earliest AD 500 and then in other regions. [2] The Indian worm-gear roller gin, invented sometime around the 16th century, [3] has, according to Lakwete, remained virtually unchanged up to the present time. A modern mechanical cotton gin was created by American inventor Eli Whitney in 1793 and patented in 1794.

Whitney's gin used a combination of a wire screen and small wire hooks to pull the cotton through, while brushes continuously removed the loose cotton lint to prevent jams. It revolutionized the cotton industry in the United States, but also led to the growth of slavery in the American South as the demand for cotton workers rapidly increased. The invention has thus been identified as an inadvertent contributing factor to the outbreak of the American Civil War. [4] Modern automated cotton gins use multiple powered cleaning cylinders and saws, and offer far higher productivity than their hand-powered precursors. [5]

Eli Whitney with the help of Catharine Greene invented his cotton gin in 1793. He began to work on this project after moving to Georgia in search of work, given that farmers were desperately searching for a way to make cotton farming profitable.


"The First Cotton Gin", an engraving from Harper's Magazine, 1869. This carving depicts a roller gin being used by enslaved Americans, which preceded Eli Whitney's invention. Cotton gin harpers.jpg
"The First Cotton Gin", an engraving from Harper's Magazine , 1869. This carving depicts a roller gin being used by enslaved Americans, which preceded Eli Whitney's invention.

A single-roller cotton gin came into use in India by the 5th century. An improvement invented in India was the two-roller gin, known as the "churka", "charki", or "wooden-worm-worked roller". [7]


Cotton fibers are produced in the seed pods ("bolls") of the cotton plant where the fibers ("lint") in the bolls are tightly interwoven with seeds. To make the fibers usable, the seeds and fibers must first be separated, a task which had been previously performed manually, with production of cotton requiring hours of labor for the separation. Many simple seed-removing devices had been invented, but until the innovation of the cotton gin, most required significant operator attention and worked only on a small scale. [8]

Early cotton gins

The earliest versions of the cotton gin consisted of a single roller made of iron or wood and a flat piece of stone or wood. The earliest evidence of the cotton gin is found in the fifth century, in the form of Buddhist paintings depicting a single-roller gin in the Ajanta Caves in western India. [2] These early gins were difficult to use and required a great deal of skill. A narrow single roller was necessary to expel the seeds from the cotton without crushing the seeds. The design was similar to that of a mealing stone, which was used to grind grain. The early history of the cotton gin is ambiguous, because archeologists likely mistook the cotton gin's parts for other tools. [2]

Between the 12th and 14th centuries, dual-roller gins appeared in India and China. The Indian version of the dual-roller gin was prevalent throughout the Mediterranean cotton trade by the 16th century. This mechanical device was, in some areas, driven by water power. [9]

Mughal India

The worm gear roller gin, which was invented in the Indian subcontinent during the early Delhi Sultanate era of the 13th to 14th centuries, came into use in the Mughal Empire sometime around the 16th century, [10] and is still used in the Indian subcontinent through to the present day. [2] Another innovation, the incorporation of the crank handle in the cotton gin, first appeared sometime during the late Delhi Sultanate or the early Mughal Empire. [11] The incorporation of the worm gear and crank handle into the roller cotton gin led to greatly expanded Indian cotton textile production during the Mughal era. [12]

It was reported that, with an Indian cotton gin, which is half machine and half tool, one man and one woman could clean 28 pounds of cotton per day. With a modified Forbes version, one man and a boy could produce 250 pounds per day. If oxen were used to power 16 of these machines, and a few people's labour was used to feed them, they could produce as much work as 750 people did formerly. [13]

United States

The Indian roller cotton gin, known as the churka or charkha, was introduced to the United States in the mid-18th century, when it was adopted in the southern United States. The device was adopted for cleaning long-staple cotton, but was not suitable for the short-staple cotton that was more common in certain states such as Georgia. Several modifications were made to the Indian roller gin by Mr. Krebs in 1772 and Joseph Eve in 1788, but their uses remained limited to the long-staple variety, up until Eli Whitney's development of a short-staple cotton gin in 1793. [14]

Eli Whitney's patent

Eli Whitney's original cotton gin patent, dated March 14, 1794 Patent for Cotton Gin (1794) - hi res.jpg
Eli Whitney's original cotton gin patent, dated March 14, 1794

Eli Whitney (1765–1825) applied for a patent of his cotton gin on October 28, 1793; the patent was granted on March 14, 1794, but was not validated until 1807. Whitney's patent was assigned patent number 72X. [15] There is slight controversy over whether the idea of the modern cotton gin and its constituent elements are correctly attributed to Eli Whitney. The popular image of Whitney inventing the cotton gin is attributed to an article on the subject written in the early 1870s and later reprinted in 1910 in The Library of Southern Literature. In this article, the author claimed Catharine Littlefield Greene suggested to Whitney the use of a brush-like component instrumental in separating out the seeds and cotton. To date, Greene's role in the invention of the gin has not been verified independently. [16]

Whitney's cotton gin model was capable of cleaning 50 pounds (23 kg) of lint per day. The model consisted of a wooden cylinder surrounded by rows of slender spikes, which pulled the lint through the bars of a comb-like grid. [17] The grids were closely spaced, preventing the seeds from passing through. Loose cotton was brushed off, preventing the mechanism from jamming.

Many contemporary inventors attempted to develop a design that would process short staple cotton, and Hodgen Holmes, Robert Watkins, William Longstreet, and John Murray had all been issued patents for improvements to the cotton gin by 1796. [18] However, the evidence indicates Whitney did invent the saw gin, for which he is famous. Although he spent many years in court attempting to enforce his patent against planters who made unauthorized copies, a change in patent law ultimately made his claim legally enforceable – too late for him to make much money from the device in the single year remaining before the patent expired. [19]

McCarthy's gin

While Whitney's gin facilitated the cleaning of seeds from short-staple cotton, it damaged the fibers of extra-long staple cotton ( Gossypium barbadense ). In 1840 Fones McCarthy received a patent for a "Smooth Cylinder Cotton-gin", a roller gin. McCarthy's gin was marketed for use with both short-staple and extra-long staple cotton, but was particularly useful for processing long-staple cotton. After McCarthy's patent expired in 1861, McCarthy type gins were manufactured in Britain and sold around the world. [20] McCarthy's gin was adopted for cleaning the Sea Island variety of extra-long staple cotton grown in Florida, Georgia and South Carolina. It cleaned cotton several times faster than the older gins, and, when powered by one horse, produced 150 to 200 pounds of lint a day. [21] The McCarthy gin used a reciprocating knife to detach seed from the lint. Vibration caused by the reciprocating motion limited the speed at which the gin could operate. In the middle of the 20th Century gins using a rotating blade replaced ones using a reciprocating blade. These descendants of the McCarthy gin are the only gins now used for extra-long staple cotton in the United States. [22]

Munger System Gin

The diesel-powered gin in Burton, Texas is one of the oldest in the United States that still functions. Nation's Oldest Cotton Gin -- Burton, Texas.jpg
The diesel-powered gin in Burton, Texas is one of the oldest in the United States that still functions.

For a decade and a half after the end of the Civil War in 1865, a number of innovative features became widely used for ginning in the United States. They included steam power instead of animal power, an automatic feeder to assure that the gin stand ran smoothly, a condenser to make the clean cotton coming out of the gin easier to handle, and indoor presses so that cotton no longer had to be carried across the gin yard to be baled. [23] Then, in 1879, while he was running his father's gin in Rutersville, Texas, Robert S. Munger invented additional system ginning techniques. Robert and his wife, Mary Collett, later moved to Mexia, Texas, built a system gin, and obtained related patents. [24]

The Munger System Ginning Outfit (or system gin) integrated all the ginning operation machinery, thus assuring the cotton would flow through the machines smoothly. Such system gins use air to move cotton from machine to machine. [25] Munger's motivation for his inventions included improving employee working conditions in the gin. However, the selling point for most gin owners was the accompanying cost savings while producing cotton both more speedily and of higher quality. [26]

By the 1960s, many other advances had been made in ginning machinery, but the manner in which cotton flowed through the gin machinery continued to be the Munger system. [27]

Economic Historian William H. Phillips referred to the development of system ginning as "The Munger Revolution" in cotton ginning. [28] He wrote,

"[The Munger] innovations were the culmination of what geographer Charles S. Aiken has termed the second ginning revolution, in which the privately owned plantation gins were replaced by large-scale public ginneries. This revolution, in turn, led to a major restructuring of the cotton gin industry, as the small, scattered gin factories and shops of the nineteenth century gave way to a dwindling number of large twentieth-century corporations designing and constructing entire ginning operations." [29]

One of the few (and perhaps only) examples of a Munger gin left in existence is on display at Frogmore Plantation in Louisiana.

Effects in the United States

Cotton gin at Jarrell Plantation 17 09 024 jarrell.jpg
Cotton gin at Jarrell Plantation

Prior to the introduction of the mechanical cotton gin, cotton had required considerable labor to clean and separate the fibers from the seeds. [30] With Eli Whitney's gin, cotton became a tremendously profitable business, creating many fortunes in the Antebellum South. Cities such as New Orleans, Louisiana; Mobile, Alabama; Charleston, South Carolina; and Galveston, Texas became major shipping ports, deriving substantial economic benefit from cotton raised throughout the South. Additionally, the greatly expanded supply of cotton created strong demand for textile machinery and improved machine designs that replaced wooden parts with metal. This led to the invention of many machine tools in the early 19th century. [1]

The invention of the cotton gin caused massive growth in the production of cotton in the United States, concentrated mostly in the South. Cotton production expanded from 750,000 bales in 1830 to 2.85 million bales in 1850. As a result, the region became even more dependent on plantations and slavery, with plantation agriculture becoming the largest sector of its economy. [31] While it took a single slave about ten hours to separate a single pound of fiber from the seeds, a team of two or three slaves using a cotton gin could produce around fifty pounds of cotton in just one day. [32] The number of slaves rose in concert with the increase in cotton production, increasing from around 700,000 in 1790 to around 3.2 million in 1850. [33] By 1860, black slave labor from the American South was providing two-thirds of the world's supply of cotton, and up to 80% of the crucial British market. [34] The cotton gin thus "transformed cotton as a crop and the American South into the globe's first agricultural powerhouse". [35]

An 1896 advertisement for the Lummus cotton gin Lummus Cotton Gin Advertisement.JPG
An 1896 advertisement for the Lummus cotton gin

Because of its inadvertent effect on American slavery, and on its ensuring that the South's economy developed in the direction of plantation-based agriculture (while encouraging the growth of the textile industry elsewhere, such as in the North), the invention of the cotton gin is frequently cited as one of the indirect causes of the American Civil War. [4] [36] [37]

Modern cotton gins

Diagram of a modern cotton gin plant, displaying numerous stages of production Ginplant.jpg
Diagram of a modern cotton gin plant, displaying numerous stages of production
Modern cotton gins Cotton jins in use.jpg
Modern cotton gins

In modern cotton production, cotton arrives at industrial cotton gins either in trailers, in compressed rectangular "modules" weighing up to 10 metric tons each or in polyethylene wrapped round modules similar to a bale of hay produced during the picking process by the most recent generation of cotton pickers. Cotton arriving at the gin is sucked in via a pipe, approximately 16 inches (41 cm) in diameter, that is swung over the cotton. This pipe is usually manually operated, but is increasingly automated in modern cotton plants. The need for trailers to haul the product to the gin has been drastically reduced since the introduction of modules. If the cotton is shipped in modules, the module feeder breaks the modules apart using spiked rollers and extracts the largest pieces of foreign material from the cotton. The module feeder's loose cotton is then sucked into the same starting point as the trailer cotton.

The cotton then enters a dryer, which removes excess moisture. The cylinder cleaner uses six or seven rotating, spiked cylinders to break up large clumps of cotton. Finer foreign material, such as soil and leaves, passes through rods or screens for removal. The stick machine uses centrifugal force to remove larger foreign matter, such as sticks and burrs, while the cotton is held by rapidly rotating saw cylinders.

The gin stand uses the teeth of rotating saws to pull the cotton through a series of "ginning ribs", which pull the fibers from the seeds which are too large to pass through the ribs. The cleaned seed is then removed from the gin via an auger conveyor system. The seed is reused for planting or is sent to an oil mill to be further processed into cottonseed oil and cottonseed meal. The lint cleaners again use saws and grid bars, this time to separate immature seeds and any remaining foreign matter from the fibers. The bale press then compresses the cotton into bales for storage and shipping. Modern gins can process up to 15 tonnes (33,000 lb) of cotton per hour.

Modern cotton gins create a substantial amount of cotton gin residue (CGR) consisting of sticks, leaves, dirt, immature bolls, and cottonseed. Research is currently under way to investigate the use of this waste in producing ethanol. Due to fluctuations in the chemical composition in processing, there is difficulty in creating a consistent ethanol process, but there is potential to further maximize the utilization of waste in the cotton production. [38] [5]

See also

Related Research Articles

Eli Whitney American inventor of the cotton gin

Eli Whitney was an American inventor, widely known for inventing the cotton gin, one of the key inventions of the Industrial Revolution and shaped the economy of the Antebellum South.

Spinning is the twisting techniques where the fiber is drawn out, twisted, and wound onto a bobbin.

Cotton Plant fiber from the genus Gossypium

Cotton is a soft, fluffy staple fiber that grows in a boll, or protective case, around the seeds of the cotton plants of the genus Gossypium in the mallow family Malvaceae. The fiber is almost pure cellulose. Under natural conditions, the cotton bolls will increase the dispersal of the seeds.

This timeline of clothing and textiles technology covers the events of fiber and flexible woven material worn on the body; including making, modification, usage, and knowledge of tools, machines, techniques, crafts, and systems (technology).

Denison Olmsted U.S. physicist and astronomer

Denison Olmsted was an American physicist and astronomer. Professor Olmsted is credited with giving birth to meteor science after the 1833 Leonid meteor shower over North America spurred him to study this phenomenon.

Textile manufacture during the British Industrial Revolution early textile production via automated means

Textile manufacture during the Industrial Revolution in Britain was centred in south Lancashire and the towns on both sides of the Pennines. In Germany it was concentrated in the Wupper Valley, Ruhr Region and Upper Silesia, in Spain it was concentrated in Catalonia while in the United States it was in New England. The main key drivers of the Industrial Revolution were textile manufacturing, iron founding, steam power, oil drilling, the discovery of electricity and its many industrial applications, the telegraph and many others. Railroads, steam boats, the telegraph and other innovations massively increased worker productivity and raised standards of living by greatly reducing time spent during travel, transportation and communications.

Spinning frame Industrial Revolution invention for spinning thread in a mechanized way

The spinning frame is an Industrial Revolution invention for spinning thread or yarn from fibres such as wool or cotton in a mechanized way. It was developed in 18th-century Britain by Richard Arkwright and John Kay.

The cotton harvester is a machine that harvests cotton in a way that reduces harvest time and maximizes efficiency.

Textile manufacturing is a major industry. It is based on the conversion of fibre into yarn, yarn into fabric. These are then dyed or printed, fabricated into clothes. Different types of fibres are used to produce yarn. Cotton remains the most important natural fibre, so is treated in depth. There are many variable processes available at the spinning and fabric-forming stages coupled with the complexities of the finishing and colouration processes to the production of a wide range of products.

Cottonseed seed of the cotton plant

Cottonseed is the seed of the cotton plant.

Lint remover tool with adhesive surface for removing lint from clothing or furniture

A lint roller or lint remover is a roll of one-sided adhesive paper on a cardboard or plastic barrel that is mounted on a central spindle, with an attached handle. The device facilitates the removal of lint or other small fibers from most materials such as clothing, upholstery and linen. Once expended, the roll can typically be replaced with a "refill" roll. Invented in 1956 by Nicholas McKay, Sr., his most well-known product was the Lint Pic-Up, the world's first lint roller.

Scutching Process of separating and cleaning vegetable fiber before spinning

Scutching is a step in the processing of cotton or the dressing of flax or hemp in preparation for spinning. The scutching process separates the impurities from the raw material, such as the seeds from raw cotton or the straw and woody stem from flax fibers. Scutching can be done by hand or by a machine known as a scutcher. Hand scutching of flax is done with a wooden scutching knife and a small iron scraper. The end products of scutching flax are the long finer flax fibers called line, short coarser fibers called tow, and waste woody matter called shives.

Timeline of United States inventions (before 1890)

The United States provided many inventions in the time from the Colonial Period to the Gilded Age, which were achieved by inventors who were either native-born or naturalized citizens of the United States. Copyright protection secures a person's right to his or her first-to-invent claim of the original invention in question, highlighted in Article I, Section 8, Clause 8 of the United States Constitution, which gives the following enumerated power to the United States Congress:

To promote the Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their respective Writings and Discoveries.

History of cotton history of cotton production

The history of cotton can be traced to domestication. Cotton played an important role in the history of India, the British Empire, and the United States, and continues to be an important crop and commodity.

Cotton production in the United States

Cotton production is an important economic factor in the United States as the country leads, worldwide, in cotton exportation. The United States is ranked third in production, behind China and India. Almost all of the cotton fiber growth and production occurs in southern and western states, dominated by Texas, California, Arizona, Mississippi, Arkansas, and Louisiana. More than 99 percent of the cotton grown in the US is of the Upland variety, with the rest being American Pima. Cotton production is a $25 billion-per-year industry in the United States, employing over 200,000 people in total, as against growth of forty billion pounds a year from 77 million acres of land covering more than eighty countries. The final estimate of U.S. cotton production in 2012 was 17.31 million bales, with the corresponding figures for China and India being 35 million and 26.5 million bales, respectively.

Cotton production in Pakistan

Cotton production in Pakistan is integral to the economic development of the country. The nation is largely dependent on the cotton industry and its related textile sector, and the crop has been given a principal status in the country. Cotton is grown as an industrial crop in 15% of the nation's land during the monsoon months of May to August, known as the Kharif period, and is grown at a smaller scale between February and April. Record production of cotton was reported at 15 million bales of 470 pounds (210 kg) each in the form of phutti during 2014–15, which was an 11% rise compared to the previous season (2013–14). Production-wise, as of 2012–13, Pakistan occupied the fourth position among the cotton growers of the world, the first three being China, India and the United States, in that order. In respect of exports of raw cotton, Pakistan holds third position, and is the fourth in consumption. It is the largest exporter of cotton yarn.

Industrial Revolution in the United States

The Industrial Revolution was an epoch during the first 100 years of United States history where the economy progressed from manual labor and farm labor to a greater degree of industrialization based on labor. There were many improvements in technological and manufacturing fundamentals with the result that this shift greatly improved overall production and economic growth in the United States. The Industrial Revolution occurred in two distinct phases, the First Industrial Revolution occurred during the latter part of the 18th century through the first half of the 19th century and the Second Industrial Revolution advanced following the Civil War. Among the main contributors to the First Industrial Revolution were Samuel Slater's introduction of British Industrial methods in textile manufacturing to the United States, Eli Whitney’s invention of the Cotton gin, E. I. du Pont’s improvements in chemistry and gunpowder making, industrial advancements necessitated by the War of 1812, as well as the construction of the Erie Canal among other developments.

Frogmore Plantation United States historic place

Frogmore is an historic, privately owned cotton plantation near Ferriday in Concordia Parish, Louisiana. A working farm, it is also a tourist attraction, and may be visited to see old and new cotton farming methods. Buildings on the site include a cotton gin.

Piazza Cotton Gin United States historic place

The Piazza Cotton Gin is on the Frogmore Plantation at 11656 U.S. Highway 84, about 7 miles (11 km) west of Ferriday, Louisiana in Concordia Parish, Louisiana. The building containing the cotton gin press was built c.1880, while the machinery was added c.1900. The gin itself is a system cotton gin, which was invented by Robert S. Munger. This invention was the second major revolution in cotton processing. This example is one of the few left in existence.

Robert S. Munger American business executive and inventor (b. 1854, d. 1923)

Robert Sylvester Munger and his wife Mary Collett Munger (1857–1924) invented the "system cotton gin". After that achievement, Munger started and ran some of the largest gin manufacturing companies in the United States. He also developed properties in Dallas, Texas later designated as National Historic Places. Finally, he was a philanthropist who supported numerous causes in the Birmingham, Alabama area.



  1. 1 2 Roe, Joseph Wickham (1916), English and American Tool Builders, New Haven, Connecticut: Yale University Press, LCCN   16011753 . Reprinted by McGraw-Hill, New York and London, 1926 (LCCN   27-24075); and by Lindsay Publications, Inc., Bradley, Illinois, ( ISBN   978-0-917914-73-7).
  2. 1 2 3 4 Lakwete, 1–6.
  3. Habib, Irfan (February 3, 2018). Economic History of Medieval India, 1200-1500. Pearson Education India. ISBN   9788131727911 via Google Books.
  4. 1 2 Kelly, Martin. "Top Five Causes of the Civil War: Leading up to Secession and the Civil War". Retrieved March 14, 2011.
  5. 1 2; "Background on the Cotton Gin", retrieved October 22, 2010.
  6. Lakwete, 182.
  7. "Making Cotton – The Tools of The Trade". Fifteeneightyfour – Academic Perspectives from Cambridge University Press. June 5, 2013. Retrieved September 9, 2018.
  8. Bellis, Mary.; "The Cotton Gin and Eli Whitney", retrieved March 12, 2012.
  9. Baber, Zaheer (1996). The Science of Empire: Scientific Knowledge, Civilization, and Colonial Rule in India. Albany: State University of New York Press. p. 57. ISBN   0-7914-2919-9.
  10. Irfan Habib (2011), Economic History of Medieval India, 1200–1500, p. 53, Pearson Education
  11. Irfan Habib (2011), Economic History of Medieval India, 1200–1500, pp. 53–54, Pearson Education
  12. Irfan Habib (2011), Economic History of Medieval India, 1200–1500, p. 54, Pearson Education
  13. Karl Marx (1867). Chapter 16: "Machinery and Large-Scale Industry". Das Kapital .
  14. Hargrett, Elizabeth; Dobbs, Chris (June 6, 2017). "Cotton Gins". New Georgia Encyclopedia .
  15. "Who Invented the Cotton Gin and How Did it Impact History?".
  16. "Catharine Littlefield Greene, Brain Behind the Cotton Gin". Finding Dulcinea. March 4, 2010. Retrieved November 6, 2013.
  17. Harr, M. E. (1977). Mechanics of particulate media: A probabilistic approach. McGraw-Hill.
  18. Lakwete, 64–76.
  19. The American Historical Review by Henry Eldridge Bourne, Robert Livingston Schuyler Editors: 1895 – July 1928; J.F. Jameson and others.; Oct. 1928–Apr. 1936, H.E. Bourne and others; July 1936–Apr. 1941, R.L. Schuyler and others; July 1941– G.S. Ford and others. Published 1991, American Historical Association [etc.], pp 90–101.
  20. Lakwete, Angela. "Fones McCarthy". Encyclopedia of Alabama. Auburn University. Retrieved October 13, 2017.
  21. Shofner, Jerrel H.; Rogers, William Warren (April 1962). "Sea Island Cotton in Ante-Bellum Florida". The Florida Historical Quarterly. 40 (4): 378–79.
  22. Gillum, Marvis M.; Van Doorn, D. W.; Norman, B.M.; Owen, Charles (1994). "Roller Ginning". In Anthony, Stanley W.; Mayfield, William D. (eds.). Cotton Ginner's Handbook. United States Department of Agriculture. p. 244. ISBN   9780788124204 . Retrieved October 13, 2017.
  23. Aiken, Charles S. (April 1973). "The Evolution of Cotton Ginning in the Southeastern United States". Geographical Review. 63 (2): 205.
  24. Mann, Sally (2016). Hold still : a memoir with photographs. Little, Brown and Company. pp. 314–317. ISBN   978-0-316-24775-7.
  25. Atkinson, Edward (June 1, 1880). "Report on the Cotton Manufacturers of the United States". In Department of Interior, Census Office. Report on the Manufacturers of the United States at the Tenth Census. Government Printing Office. pp. 937–984.
  26. Mann, Sally (2016). Hold still : a memoir with photographs. Little, Brown and Company. p. 318. ISBN   978-0-316-24775-7.
  27. Aiken, Charles S. (April 1973). "The Evolution of Cotton Ginning in the Southeastern United States". Geographical Review. 63 (2): 205–206.
  28. Phillips, William (1994). "Making a Business of It: The Evolution of Southern Cotton Gin Patenting, 1831-1890". Agricultural History. 68 (2): 88, 90.
  29. Phillips, William (1994). "Making a Business of It: The Evolution of Southern Cotton Gin Patenting, 1831-1890". Agricultural History. 68 (2): 85–86.
  30. Hamner, Christopher., "The Disaster of Innovation", retrieved July 11, 2011.
  31. Pierson, Parke (September 2009). "Seeds of conflict". America's Civil War. 22 (4): 25.
  32. Woods, Robert (September 1, 2009). "A Turn of the Crank Started the Civil War." Mechanical Engineering.
  33. Smith, N. Jeremy (July 2009). "Making Cotton King". World Trade. 22 (7): 82.
  34. "Cotton – a history". New Internationalist. 399: 18–19. April 2007.
  35. Underhill, Paco (2008). "The cotton gin, oil, robots and the store of 2020". Display & Design Ideas. 20 (10): 48.
  36. Joe Ryan. "What Caused the American Civil War?" Retrieved March 14, 2011.
  37. Randy Golden, "Causes of the Civil War". About North Georgia. Retrieved March 14, 2011.
  38. Agblevor, Foster A.; Batz, Sandra; Trumbo, Jessica (February 3, 2018). "Composition and Ethanol Production Potential of Cotton Gin Residues". Biotechnology for Fuels and Chemicals. Humana Press, Totowa, NJ. pp. 219–230. doi:10.1007/978-1-4612-0057-4_17. ISBN   978-1-4612-6592-4.