Cranial cavity | |
---|---|
Details | |
Function | Contains and protects the brain |
Identifiers | |
Latin | cavitas cranii |
TA98 | A01.1.00.048 A02.1.00.012 |
TA2 | 100, 413 |
FMA | 9644 |
Anatomical terminology |
The cranial cavity, also known as intracranial space, is the space within the skull that accommodates the brain. The skull is also known as the cranium. [1] The cranial cavity is formed by eight cranial bones known as the neurocranium that in humans includes the skull cap and forms the protective case around the brain. The remainder of the skull is the facial skeleton. The meninges are three protective membranes that surround the brain to minimize damage to the brain in the case of head trauma. Meningitis is the inflammation of meninges caused by bacterial or viral infections.
The capacity of an adult human cranial cavity is 1,200–1,700 cm3. [2]
The spaces between meninges and the brain are filled with a clear cerebrospinal fluid, increasing the protection of the brain. Facial bones of the skull are not included in the cranial cavity. There are only eight cranial bones: The occipital, sphenoid, frontal, ethmoid, two parietal, and two temporal bones are fused together by the ossification of fixed fibrous sutures. The frontal and sphenoid bones are towards the front middle of the skull and in front of the temporal bone. The ethmoid bone is the bone at the roof of the nose that separates the nasal cavity from the brain. It is a part of the dorsal cavity the cranial cavity and the spinal cord. The occipital bone is at the back of the skull. The dorsal cavity is lined by the three meninges. The three meninges are the three membranes that envelop the brain and spinal cord, in which the central nervous system developed, which are the pia mater, the arachnoid mater, and the dura mater. The latter is the thickest and outermost of the three membrane layers; it contains the most collagen, and it is derived from the mesoderm - the middle germ layer or the primary layer of the cells formed in embryogenic development via epigenetic effects induced by developmental cues, in the early embryo. Also there are the two parietal bones and the two temporal bones, which are a part of the dorsal cavity located on the posterior of the body. The occipital bone found in the rear of the skull is thicker to limit fractures caused by blows to the back of the head. The eight bones are blended together to form the cranial cavity. The pituitary gland is also found in the make up of the cranial cavity. It plays a major role in the body, creating and secreting many bodily hormones. The gland secretes different fluids that are important for the body to function. The body's temperature, physical, and sexual functions are regulated by this gland. One of the major glands are controlled through this cavity.
The cerebrum is the most anterior part of the brain, located in the top half of the skull, consisting of two hemispheres separated by a fissure and connected by the corpus callosum. It is responsible for integrating complex sensory and neural functions, and subsequently initiating and coordinating voluntary activity in the body.
The cortex is the outer layer of the cerebrum, composed of folded grey matter. Its neuron cell bodies, dendrites, synapses, axons, and axon terminals play a crucial role in consciousness. The two hemispheres are divided into four lobes, distinct sections of the organ: the frontal lobe, parietal lobe, temporal lobe, and occipital lobe. Our understanding of the specific functions of the cerebral cortex are based on the theories of localisation and lateralisation. Localisation is the theory that specific areas of the brain are associated with/responsible for particular physical and psychological functions. Lateralisation is the theory that one hemisphere is dominant over the other/responsible for particular physical and psychological functions.
The meninges are the three membranes that line the skull and vertebral canal, and enclose the brain and spinal cord. The Cerebrospinal Fluid serves a vital function in the cerebral autoregulation of cerebral blood flow. Cerebrospinal Fluid occupies the subarachnoid space and the ventricular system around and inside the brain and spinal cord.
There are twelve cranial nerves that are responsible for controlling the cranial cavity. These nerves are responsible for providing necessary sensory information for things such as smell, taste, hearing, and sight. The ability to sleep and chew is also a part of one of the things the cranial cavities in charge of. In order for the cranial cavity to be able to do all these functions it has to have the organs to be able to control those systems. The cranial cavity houses the Brain, Meninges, and the Cerebrospinal Fluid. The primary function of the brain is supplying information to the rest of the body and to help it function as whole. It helps supply some of the cranial nerves from the face to the feet and also to help get the body performing critical bodily functions.
The cranial cavity includes eight cranial bones and they are collectively combined to form this area. A gland that is found in this cavity is called the pituitary gland which secretes different fluids that are necessary for different parts of the body to function. There are many things that are regulated by this gland such as body temperature, physical growth, and sexual functions. The pituitary gland also controls the thyroid gland.
The cranial cavity has a variety of spinal and cranial nerves residing in it. The cranial nerves are responsible for storing sensory information needed for taste, smell, sight and the ability to hear. The spinal nerves allow for the sensory and motor signals to be received, which provide a normal feeling and function for the arms and legs.
In the event that the brain strikes the inside of the skull, there is a risk of a minor traumatic brain injury (concussion). This type of injury can alter brain function, cause memory loss, headaches and/or nausea. A minor traumatic brain injury can be followed by post concussion syndrome. As there are a number of structures in the cranial cavity, a traumatic injury to the head can potentially cause major damage to the brain. This is why it is recommended to get medical attention following a head injury.
The cranial cavity houses the meninges, as well as other necessary organs, and these membranes surround the central nervous system. If an infection forms, it can lead to a disease called meningitis which can be potentially fatal. [3]
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric and triploblastic animals—that is, all multicellular animals except sponges and diploblasts. It is a structure composed of nervous tissue positioned along the rostral to caudal axis of the body and may have an enlarged section at the rostral end which is a brain. Only arthropods, cephalopods and vertebrates have a true brain, though precursor structures exist in onychophorans, gastropods and lancelets.
Cranial nerves are the nerves that emerge directly from the brain, of which there are conventionally considered twelve pairs. Cranial nerves relay information between the brain and parts of the body, primarily to and from regions of the head and neck, including the special senses of vision, taste, smell, and hearing.
A body cavity is any space or compartment, or potential space, in an animal body. Cavities accommodate organs and other structures; cavities as potential spaces contain fluid.
The skull, or cranium, is typically a bony enclosure around the brain of a vertebrate. In some fish, and amphibians, the skull is of cartilage. The skull is at the head end of the vertebrate.
Articles related to anatomy include:
In neuroanatomy, the trigeminal nerve (lit. triplet nerve), also known as the fifth cranial nerve, cranial nerve V, or simply CN V, is a cranial nerve responsible for sensation in the face and motor functions such as biting and chewing; it is the most complex of the cranial nerves. Its name (trigeminal, from Latin tri- 'three' and -geminus 'twin') derives from each of the two nerves (one on each side of the pons) having three major branches: the ophthalmic nerve (V1), the maxillary nerve (V2), and the mandibular nerve (V3). The ophthalmic and maxillary nerves are purely sensory, whereas the mandibular nerve supplies motor as well as sensory (or "cutaneous") functions. Adding to the complexity of this nerve is that autonomic nerve fibers as well as special sensory fibers (taste) are contained within it.
The sphenoid bone is an unpaired bone of the neurocranium. It is situated in the middle of the skull towards the front, in front of the basilar part of the occipital bone. The sphenoid bone is one of the seven bones that articulate to form the orbit. Its shape somewhat resembles that of a butterfly, bat or wasp with its wings extended. The name presumably originates from this shape, since sphekodes (σφηκώδης) means wasp-like in ancient Greek.
The occipital bone is a cranial dermal bone and the main bone of the occiput. It is trapezoidal in shape and curved on itself like a shallow dish. The occipital bone overlies the occipital lobes of the cerebrum. At the base of the skull in the occipital bone, there is a large oval opening called the foramen magnum, which allows the passage of the spinal cord.
The temporal bones are situated at the sides and base of the skull, and lateral to the temporal lobes of the cerebral cortex.
In anatomy, the meninges are the three membranes that envelop the brain and spinal cord. In mammals, the meninges are the dura mater, the arachnoid mater, and the pia mater. Cerebrospinal fluid is located in the subarachnoid space between the arachnoid mater and the pia mater. The primary function of the meninges is to protect the central nervous system.
Pia mater, often referred to as simply the pia, is the delicate innermost layer of the meninges, the membranes surrounding the brain and spinal cord. Pia mater is medieval Latin meaning "tender mother". The other two meningeal membranes are the dura mater and the arachnoid mater. Both the pia and arachnoid mater are derivatives of the neural crest while the dura is derived from embryonic mesoderm. The pia mater is a thin fibrous tissue that is permeable to water and small solutes. The pia mater allows blood vessels to pass through and nourish the brain. The perivascular space between blood vessels and pia mater is proposed to be part of a pseudolymphatic system for the brain. When the pia mater becomes irritated and inflamed the result is meningitis.
The brain is the central organ of the human nervous system, and with the spinal cord, comprises the central nervous system. It consists of the cerebrum, the brainstem and the cerebellum. The brain controls most of the activities of the body, processing, integrating, and coordinating the information it receives from the sensory nervous system. The brain integrates the instructions sent to the rest of the body. The brain is contained in, and protected by, the skull of the head.
The dura mater, is the outermost of the three meningeal membranes. The dura mater has two layers, an outer periosteal layer closely adhered to the neurocranium, and an inner meningeal layer known as the dural border cell layer. The two dural layers are for the most part fused together forming a thick fibrous tissue membrane that covers the brain and the vertebrae of the spinal column. But the layers are separated at the dural venous sinuses to allow blood to drain from the brain. The dura covers the arachnoid mater and the pia mater the other two meninges in protecting the central nervous system.
The crown is the top portion of the head behind the vertex. The anatomy of the crown varies between different organisms. The human crown is made of three layers of the scalp above the skull. The crown also covers a range of bone sutures, and contains blood vessels and branches of the trigeminal nerve.
A skull fracture is a break in one or more of the eight bones that form the cranial portion of the skull, usually occurring as a result of blunt force trauma. If the force of the impact is excessive, the bone may fracture at or near the site of the impact and cause damage to the underlying structures within the skull such as the membranes, blood vessels, and brain.
A basilar skull fracture is a break of a bone in the base of the skull. Symptoms may include bruising behind the ears, bruising around the eyes, or blood behind the ear drum. A cerebrospinal fluid (CSF) leak occurs in about 20% of cases and may result in fluid leaking from the nose or ear. Meningitis occurs in about 14% of cases. Other complications include injuries to the cranial nerves or blood vessels.
The superior sagittal sinus, within the human head, is an unpaired dural venous sinus lying along the attached margin of the falx cerebri. It allows blood to drain from the lateral aspects of the anterior cerebral hemispheres to the confluence of sinuses. Cerebrospinal fluid drains through arachnoid granulations into the superior sagittal sinus and is returned to the venous circulation.
The middle cranial fossa is formed by the sphenoid bones, and the temporal bones. It lodges the temporal lobes, and the pituitary gland. It is deeper than the anterior cranial fossa, is narrow medially and widens laterally to the sides of the skull. It is separated from the posterior cranial fossa by the clivus and the petrous crest.
This article describes the anatomy of the head and neck of the human body, including the brain, bones, muscles, blood vessels, nerves, glands, nose, mouth, teeth, tongue, and throat.
The following outline is provided as an overview of and topical guide to the human brain: