Crater Glacier

Last updated
Crater Glacier
MSH06 aerial crater dome glaciers from north 10-22-06.jpg
The Crater Glacier from the north in October 2006
Type Mountain Glacier
Location Mount St. Helens, Skamania County, Washington, USA
Coordinates 46°11′48″N122°11′15″W / 46.19667°N 122.18750°W / 46.19667; -122.18750
ThicknessRanges up to 656 ft (200 m)
TerminusTalus
StatusExpanding

The Crater Glacier [1] (also known as Tulutson Glacier) is a geologically young glacier on Mount St. Helens, in the U.S. state of Washington. The glacier formed after the 1980 eruption and due to its location, the body of ice grew rapidly, unknown to the public for nearly 20 years. The glacier once contained ice caves in the smooth ice before the 2004–2008 volcanic activity. The growth of the lava dome and volcanic eruptions from 2004 to 2008 significantly altered the appearance of the glacier. [2] In the same time period, several agencies decided to put an official name on the glacier which, at first, was Tulutson Glacier. A later decision made Crater Glacier the official glacier name. Despite the volcanic activity, the glacier continued to advance and by mid-2008, the glacier completely encircled the lava domes. [2] [3] [4] [5] In addition, new glaciers (rock or ice) have formed around Crater Glacier as well. [6]

Contents

Description

True to its name, the glacier lies inside the north-facing crater left by the 1980 eruption of Mount St. Helens and the glacier's elevation is about 6,794 ft (2,071 m). [7] A massive central lava dome emplaced from 1980 to 1987 occupies the center of the crater, and the glacier formed in the shape of a horseshoe around the dome, with two terminal moraines on the eastern and western sides. Heavy winter snowfall, repeated snow avalanches, rockfalls, and sun-shading by the surrounding cliffs to the south, led to the exceptionally rapid growth of this glacier. [8] Thus, the glacier composition is estimated to be 60% ice and 40% rock, [9] with an average thickness of 328 feet (100 m) [10] and a maximum thickness of around 656 feet (200 m); nearly as deep as Mount Rainier's Carbon Glacier. [2] None of the ice is older than the year 1980, but by 2001 the volume of the new glacier was about 40%-50% as large as all the pre–1980 glaciers combined. [11] The surface of the glacier looks dark and dirty in the summer due to the numerous rockfalls from the steep, unstable crater walls along with ash from eruptions, all of which help to insulate and protect the growing glacier. [12] [13] [14] [15] [16] The 2004-2008 volcanic activity created a series of domes that nearly split the glacier into two lobes at the south end of the crater. [12] In spite of the four-year lava dome building period, the glacier remains North America's youngest and fastest growing glacier. [17] With the joining of the termini on the north end of Crater Glacier in May 2008, the body of ice completely encircles the lava domes. [4] [5] Meltwater from the glacier gives rise to Loowit Creek. [18]

Pre-2004 eruption glacier caves of Crater Glacier
New glaciers are forming on the crater wall, above and to the left of the lava dome (zoom in to view). MSH06 aerial crater from north high angle 09-12-06.jpg
New glaciers are forming on the crater wall, above and to the left of the lava dome (zoom in to view).

In 2000, glacier caves were discovered on the then-smooth glacier surface. Many of these glacier caves were big enough to explore, like the glacier caves on the summit of Mount Rainier. Most of the glacier caves were located near the 1980s lava dome, where hot steam and volcanic gas emissions from hidden fumaroles on the crater floor or lava dome melted holes in the young glacial ice. [19] About 7,900 feet or 2.4 km of caves and passageways in the glacier were mapped and studied. [20]

Other glaciers and new rock glaciers

Since 2004, new glaciers have formed on the crater wall above Crater Glacier feeding rock and ice to Crater Glacier below. In addition, there are two rock glaciers to the north of the eastern lobe of Crater Glacier and one north of the western lobe. [6] [21] Two of these rock glaciers have merged with the Crater Glacier, with one on the west and one on the east. The other rock glacier on the eastern slopes of the crater wall is very close to touching the glacier.

Evolution

In the months after the eruption, the crater floor of St. Helens remained hot and unstable, with five minor volcanic eruptions, and lava dome construction between May and October 1980. [22] [23] After the eruptions ceased in the winter of 1980, the crater floor cooled down enough for snow and ice accumulation. [24] Beginning with snowfall in the winter of 1980-1981, the glacier began to grow very rapidly in the shadow of the crater. [19] The glacier thickened at a rate of as high as 50 ft (15 m) per year and advanced northward as much as 135 ft (41 m) a year. [17] This glacier growth was discovered by scientists working in the crater about seven to nine years later. However, the existence of the glacier was not publicized until 1999. [20] By 2004, Crater Glacier covered about 0.36 square mile (0.93 km2), about 20% of the glacier area in the pre-1980 glaciers, [2] and there was a western and eastern lobe flowing around the 1980s dome. Due to the gas emissions on the crater floor, there were glacier caves (ice caves) in the once smooth glacial ice, and several of them had been explored by the late 1990s. [25] [26]

With the volcanic activity from 2004 to 2008, the glacier lobes were pushed aside and overthickened by the growth of new volcanic domes. As the two streams of ice were compressed between the crater wall and the new lava domes, the ice moved rapidly downhill, much like the squeezing of toothpaste out of a container. This resulted in a very rapid advance of the glacier termini; first the western glacier arm merged with the rock glacier on the western crater wall and then, both arms of the Crater Glacier joined north 1980s lava dome in May 2008, despite the volcanic activity. [2] [5] In addition, the volcanic activity modified the surface of the glacier and transformed it from being mostly crevasse-free to being a chaotic jumble of icefalls heavily criss-crossed with crevasses and seracs due to movement of the crater floor and lava dome growth. [12] At the south end, the new domes almost split the Crater Glacier into two separate glaciers and melted 10% in volume of the glacier's ice. [2] However, cold rock on the edge of the glacier insulated the glacier ice from the 1,300  °F (700  °C ) lava spewing out of the lava domes, easing concerns of a catastrophic lahar caused by glacier melting. [9] The porous nature of the crater floor also reduced the amount of meltwater flowing out of the crater.

After the volcanic activity of the 2000s, the thickness of the glacier continues to increase at a slower rate of 15 ft (5 m) per year [3] and the glacier continues to advance at 3 ft (1 m) per day. [3] [9] The latest aerial imagery taken in 2012 shows that the glacier has entered the upper reaches of the Loowit Creek canyon and the headwaters of the creek. Ice mixed with rock debris now spills into the canyon and the creek has been pushed to the east. [27] [ citation needed ] Nearby, on the slopes of the eastern crater wall, the glacier touches one of the rock glaciers and the glacier is very close to merging with the other rock glacier. A medial moraine can be seen at the interface of the eastern and western arms of the Crater Glacier.

Glacier Evolution in the Crater

Naming

Since the glacier was first observed to be forming and actively flowing in the late 1980s, most scientists working on the mountain have referred to it informally as the "crater glacier". That name has been in wide use with the public (at least those who were aware of the glacier's existence) for the two decades since the glacier formed, and has appeared in several scientific publications too. A single scientific paper, the most complete published study of the glacier to date, referred to it as the "Amphitheater glacier," [15] but that name has not been used otherwise.

Despite numerous observations and publications about the growing glacier in the late 1990s and early 2000s, no move was made to give the glacier a permanent and official name until late 2004, after the current eruptive cycle began and the new dome began to split the glacier. [14] [25] [26] [28] At that time, a proponent from the Cowlitz tribe suggested the name "Tulutson Glacier," from the Cowlitz language word for ice. In March 2005, the Washington State Board on Geographic Names chose Tulutson over three other contenders (Crater, Spirit, and Tamanawas), [29] and so Tulutson Glacier became the de facto name.

However, the U.S. Board on Geographic Names had yet to make its decision, which would be official throughout the United States. The name Tulutson Glacier was submitted for consideration, [30] along with Crater Glacier [31] and Kraffts Glacier, which would have honored the volcanologists Katia and Maurice Krafft, killed by a pyroclastic flow in 1991. In June 2006, the U.S. BGN chose Crater Glacier because of its two-decade precedent of common use, despite objections from the state of Washington and the United States Forest Service which both preferred Tulutson. [32] The scientists at the USGS Cascades Volcano Observatory strongly supported Crater Glacier, and also commented that Tulutson may not be an appropriate name since the volcano "lies inland in a region where the native language was not Cowlitz but Sahaptin."

Icefall on east lobe of the Crater Glacier MSH06 east arm crater glacier 10-22-06.jpg
Icefall on east lobe of the Crater Glacier

After the decision, some controversy erupted following an editorial in a local newspaper protesting the decision, and the state of Washington "has indicated that the name Tulutson Glacier will continue to appear on State products, although if the feature melts soon, as is anticipated, this may not be a great concern." [33] Despite these protests, the glacier's official name remained Crater Glacier, though shortly after their June 2006 decision, the BGN received a follow-up proposal to name the two arms of the glacier, East Crater Glacier and West Crater Glacier. [33] This was because, at that point in time, the dome-building eruptions had nearly split the glacier into an east and west arm. No further action has been taken on this matter and the merging of the ice streams north of the 1980s lava dome has rendered this move unnecessary.

See also

Related Research Articles

<span class="mw-page-title-main">Mount Baker</span> Mountain in Washington state, United States

Mount Baker, also known as Koma Kulshan or simply Kulshan, is a 10,781 ft (3,286 m) active glacier-covered andesitic stratovolcano in the Cascade Volcanic Arc and the North Cascades of Washington in the United States. Mount Baker has the second-most thermally active crater in the Cascade Range after Mount St. Helens. About 30 miles (48 km) due east of the city of Bellingham, Whatcom County, Mount Baker is the youngest volcano in the Mount Baker volcanic field. While volcanism has persisted here for some 1.5 million years, the current volcanic cone is likely no more than 140,000 years old, and possibly no older than 80–90,000 years. Older volcanic edifices have mostly eroded away due to glaciation.

<span class="mw-page-title-main">Mount St. Helens</span> Volcano in Washington, U.S.

Mount St. Helens is an active stratovolcano located in Skamania County, Washington, in the Pacific Northwest region of the United States. It lies 52 miles (83 km) northeast of Portland, Oregon, and 98 miles (158 km) south of Seattle. Mount St. Helens takes its English name from that of the British diplomat Alleyne Fitzherbert, 1st Baron St Helens, a friend of explorer George Vancouver who surveyed the area in the late 18th century. The volcano is part of the Cascade Volcanic Arc, a segment of the Pacific Ring of Fire.

<span class="mw-page-title-main">Long Valley Caldera</span> Geologic depression near Mammoth Mountain, California, United States

Long Valley Caldera is a depression in eastern California that is adjacent to Mammoth Mountain. The valley is one of the Earth's largest calderas, measuring about 20 mi (32 km) long (east-west), 11 mi (18 km) wide (north-south), and up to 3,000 ft (910 m) deep.

<span class="mw-page-title-main">Mount Shasta</span> Stratovolcano in California, United States

Mount Shasta is a potentially active volcano at the southern end of the Cascade Range in Siskiyou County, California. At an elevation of 14,179 feet, it is the second-highest peak in the Cascades and the fifth-highest in the state. Mount Shasta has an estimated volume of 85 cubic miles, which makes it the most voluminous stratovolcano in the Cascade Volcanic Arc. The mountain and surrounding area are part of the Shasta–Trinity National Forest.

<span class="mw-page-title-main">Mount Hood</span> Stratovolcano in Oregon, United States

Mount Hood is an active stratovolcano in the Cascade Volcanic Arc. It was formed by a subduction zone on the Pacific coast and rests in the Pacific Northwest region of the United States. It is located about 50 mi (80 km) east-southeast of Portland, on the border between Clackamas and Hood River counties. In addition to being Oregon's highest mountain, it is one of the loftiest mountains in the nation based on its prominence, and it offers the only year-round lift-served skiing in North America.

Landforms are categorized by characteristic physical attributes such as their creating process, shape, elevation, slope, orientation, rock exposure, and soil type.

<span class="mw-page-title-main">Mono–Inyo Craters</span> Volcanic chain in eastern California, United States

The Mono–Inyo Craters are a volcanic chain of craters, domes and lava flows in Mono County, Eastern California. The chain stretches 25 miles (40 km) from the northwest shore of Mono Lake to the south of Mammoth Mountain. The Mono Lake Volcanic Field forms the northernmost part of the chain and consists of two volcanic islands in the lake and one cinder cone volcano on its northwest shore. Most of the Mono Craters, which make up the bulk of the northern part of the Mono–Inyo chain, are phreatic volcanoes that have since been either plugged or over-topped by rhyolite domes and lava flows. The Inyo volcanic chain form much of the southern part of the chain and consist of phreatic explosion pits, and rhyolitic lava flows and domes. The southernmost part of the chain consists of fumaroles and explosion pits on Mammoth Mountain and a set of cinder cones south of the mountain; the latter are called the Red Cones.

<span class="mw-page-title-main">Lassen Peak</span> Active volcano in California, United States

Lassen Peak, commonly referred to as Mount Lassen, is a lava dome volcano and the southernmost active volcano in the Cascade Range of the Western United States. Located in the Shasta Cascade region of Northern California, it is part of the Cascade Volcanic Arc, which stretches from southwestern British Columbia to northern California. Lassen Peak reaches an elevation of 10,457 ft (3,187 m), standing above the northern Sacramento Valley. It supports many flora and fauna among its diverse habitats, which are subject to frequent snowfall and reach high elevations.

<span class="mw-page-title-main">Mount Garibaldi</span> Stratovolcano in British Columbia, Canada

Mount Garibaldi is a dormant stratovolcano in the Garibaldi Ranges of the Pacific Ranges in southwestern British Columbia, Canada. It has a maximum elevation of 2,678 metres and rises above the surrounding landscape on the east side of the Cheakamus River in New Westminster Land District. In addition to the main peak, Mount Garibaldi has two named sub-peaks. Atwell Peak is a sharp, conical peak slightly higher than the more rounded peak of Dalton Dome. Both were volcanically active at different times throughout Mount Garibaldi's eruptive history. The northern and eastern flanks of Mount Garibaldi are obscured by the Garibaldi Névé, a large snowfield containing several radiating glaciers. Flowing from the steep western face of Mount Garibaldi is the Cheekye River, a tributary of the Cheakamus River. Opal Cone on the southeastern flank is a small volcanic cone from which a lengthy lava flow descends. The western face is a landslide feature that formed in a series of collapses between 12,800 and 11,500 years ago. These collapses resulted in the formation of a large debris flow deposit that fans out into the Squamish Valley.

<span class="mw-page-title-main">1980 eruption of Mount St. Helens</span> Major volcanic eruption in Skamania County, Washington, U.S.

On March 27, 1980, a series of volcanic explosions and pyroclastic flows began at Mount St. Helens in Skamania County, Washington, United States. A series of phreatic blasts occurred from the summit and escalated until a major explosive eruption took place on May 18, 1980, at 8:32 am. The eruption, which had a volcanic explosivity index of 5, was the first to occur in the contiguous United States since the much smaller 1915 eruption of Lassen Peak in California. It has often been declared the most disastrous volcanic eruption in U.S. history.

<span class="mw-page-title-main">Mount St. Helens National Volcanic Monument</span> Government-protected area in the United States

Mount St. Helens National Volcanic Monument is a U.S. National Monument that includes the area around Mount St. Helens in Cowlitz and Skamania Counties, Washington. It was established on August 27, 1982, by U.S. President Ronald Reagan, following the 1980 eruption. The 110,000 acre (445 km2) National Volcanic Monument was set aside for research, recreation, and education. Inside the monument, the environment is left to respond naturally to the disturbance. It was the third national monument to be managed by the U.S. Forest Service.

<span class="mw-page-title-main">Garibaldi Volcanic Belt</span> Volcanic chain in southwestern British Columbia, Canada

The Garibaldi Volcanic Belt is a northwest–southeast trending volcanic chain in the Pacific Ranges of the Coast Mountains that extends from Watts Point in the south to the Ha-Iltzuk Icefield in the north. This chain of volcanoes is located in southwestern British Columbia, Canada. It forms the northernmost segment of the Cascade Volcanic Arc, which includes Mount St. Helens and Mount Baker. Most volcanoes of the Garibaldi chain are dormant stratovolcanoes and subglacial volcanoes that have been eroded by glacial ice. Less common volcanic landforms include cinder cones, volcanic plugs, lava domes and calderas. These diverse formations were created by different styles of volcanic activity, including Peléan and Plinian eruptions.

<span class="mw-page-title-main">2004–2008 volcanic activity of Mount St. Helens</span> Volcanic eruption in Washington, United States

The 2004–2008 volcanic activity of Mount St. Helens in Washington, United States has been documented as a continuous eruption in the form of gradual extrusion of magma. Starting in October 2004 and ceasing in January 2008, a new lava dome was built up. The new dome did not rise above the rim of the crater created by the 1980 eruption of Mount St. Helens.

<span class="mw-page-title-main">Mount Edziza</span> Stratovolcano in British Columbia, Canada

Mount Edziza, sometimes called Edziza Mountain or Edziza Peak, is a stratovolcano in Cassiar Land District of northwestern British Columbia, Canada. It is located on the Big Raven Plateau of the Tahltan Highland which extends along the western side of the Stikine Plateau. The mountain has an elevation of 2,786 metres, making it the highest volcano of the Mount Edziza volcanic complex. However, it had an elevation of at least 3,396 metres before its original summit was likely destroyed by a violent, climactic eruption in the geologic past. Mount Edziza contains several lava domes, cinder cones and lava fields on its flanks, as well as an ice cap that is characterized by several outlet glaciers stretching out to lower altitudes. All sides of the mountain are drained by tributaries of Mess Creek and Kakiddi Creek which are situated within the Stikine River watershed.

<span class="mw-page-title-main">Mount Meager massif</span> Group of volcanoes in British Columbia, Canada

The Mount Meager massif is a group of volcanic peaks in the Pacific Ranges of the Coast Mountains in southwestern British Columbia, Canada. Part of the Cascade Volcanic Arc of western North America, it is located 150 km (93 mi) north of Vancouver at the northern end of the Pemberton Valley and reaches a maximum elevation of 2,680 m (8,790 ft). The massif is capped by several eroded volcanic edifices, including lava domes, volcanic plugs and overlapping piles of lava flows; these form at least six major summits including Mount Meager which is the second highest of the massif.

<span class="mw-page-title-main">Cascade Volcanoes</span> Chain of stratovolcanoes in western North America

The Cascade Volcanoes are a number of volcanoes in a volcanic arc in western North America, extending from southwestern British Columbia through Washington and Oregon to Northern California, a distance of well over 700 miles (1,100 km). The arc formed due to subduction along the Cascadia subduction zone. Although taking its name from the Cascade Range, this term is a geologic grouping rather than a geographic one, and the Cascade Volcanoes extend north into the Coast Mountains, past the Fraser River which is the northward limit of the Cascade Range proper.

<span class="mw-page-title-main">West Crater</span> Lava dome in Washington, United States

West Crater is a small lava dome with associated lava flows in southern Washington, United States. Located in Skamania County, it rises to an elevation of 4,131 feet (1,259 m), and forms part of the Cascade Volcanic Arc. It is also part of the Marble Mountain-Trout Creek Hill volcanic field, a little-known Quaternary volcanic field in the southern Cascades of Washington state. The area can be hiked, and can be accessed by roads in the Gifford Pinchot National Forest.

<span class="mw-page-title-main">Geology of the Pacific Northwest</span> Geology of Oregon and Washington (United States) and British Columbia (Canada)

The geology of the Pacific Northwest includes the composition, structure, physical properties and the processes that shape the Pacific Northwest region of North America. The region is part of the Ring of Fire: the subduction of the Pacific and Farallon Plates under the North American Plate is responsible for many of the area's scenic features as well as some of its hazards, such as volcanoes, earthquakes, and landslides.

<span class="mw-page-title-main">Silverthrone Caldera</span> Caldera in British Columbia, Canada

The Silverthrone Caldera is a potentially active caldera complex in southwestern British Columbia, Canada, located over 350 kilometres (220 mi) northwest of the city of Vancouver and about 50 kilometres (31 mi) west of Mount Waddington in the Pacific Ranges of the Coast Mountains. The caldera is one of the largest of the few calderas in western Canada, measuring about 30 kilometres (19 mi) long (north-south) and 20 kilometres (12 mi) wide (east-west). Mount Silverthrone, an eroded lava dome on the caldera's northern flank that is 2,864 metres (9,396 ft) high, may be the highest volcano in Canada.

<span class="mw-page-title-main">Mount Cayley volcanic field</span> Remote volcanic zone in Canada

The Mount Cayley volcanic field (MCVF) is a remote volcanic zone on the South Coast of British Columbia, Canada, stretching 31 km (19 mi) from the Pemberton Icefield to the Squamish River. It forms a segment of the Garibaldi Volcanic Belt, the Canadian portion of the Cascade Volcanic Arc, which extends from Northern California to southwestern British Columbia. Most of the MCVF volcanoes were formed during periods of volcanism under sheets of glacial ice throughout the last glacial period. These subglacial eruptions formed steep, flat-topped volcanoes and subglacial lava domes, most of which have been entirely exposed by deglaciation. However, at least two volcanoes predate the last glacial period and both are highly eroded. The field gets its name from Mount Cayley, a volcanic peak located at the southern end of the Powder Mountain Icefield. This icefield covers much of the central portion of the volcanic field and is one of the several glacial fields in the Pacific Ranges of the Coast Mountains.

References

  1. The official name for this feature is "Crater Glacier", as decided by an 8-4 vote of the U.S. Board on Geographic Names, Domestic Names Committee, in June 2006. This supersedes the earlier decision by the Washington State Board on Geographic Names in March 2005 to name it "Tulutson Glacier", and is now the official name required for use in all US government documents and publications. See "USGS Geographic Names Information System: Crater Glacier". 2006-06-28. Retrieved 2007-03-07.
  2. 1 2 3 4 5 6 "Volcano Review" (PDF). US Forest Service . Retrieved 2008-06-07.
  3. 1 2 3 Barker, Brian (2008-05-15). "Against odds, glacier grows in cauldron of Mt. St. Helens". Katu.com. Archived from the original on 2013-11-13. Retrieved 2013-08-31.
  4. 1 2 Schilling, Steve (2008-05-30). "MSH08_aerial_new_dome_from_north_05-30-08". United States Geological Survey . Retrieved 2008-06-07. - Glacier is still connected south of the lava dome.
  5. 1 2 3 Schilling, Steve (2008-05-30). "MSH08_aerial_st_helens_crater_from_north_05-30-08". United States Geological Survey . Retrieved 2008-06-07. - Glacier arms touch on North end of glacier.
  6. 1 2 "Laser Technology Helps Track Changes in Mount St. Helens". National Aeronautics and Space Administration, United States Geological Survey. 2004-10-25. Retrieved 2008-06-08.
  7. "Crater Glacier, Washington". TopoQuest . Retrieved 2008-07-10.
  8. Topinka, Lyn (2001-05-23). "DESCRIPTION: Mount St. Helens Snowpack and Ice Accumulation". United States Geological Survey . Retrieved 2008-06-08.
  9. 1 2 3 Hill, Craig (2007-06-22). "Mount St. Helens' Crater Glacier Advancing Three Feet Per Day". The News Tribune . Archived from the original on September 30, 2007. Retrieved 2008-06-08. - Note: Full article is in the archives, or click here Archived 2008-05-17 at the Wayback Machine .
  10. Topinka, Lyn (2006-03-01). "DESCRIPTION: Mount St. Helens Glaciers and Glaciations". United States Geological Survey . Retrieved 2008-06-08.
  11. Dale, Virginia H.; Swanson, Frederick J.; Crisafulli, Charles M. (2005). Ecological Responses to the 1980 Eruption of Mount St. Helens. Van Winkle Publishing Co. p. 34. ISBN   978-0-387-28150-6.
  12. 1 2 3 Schilling, Steve P.; David W. Ramsey; James A. Messerich; Ren A. Thompson (2006-08-08). "USGS Scientific Investigations Map 2928: Rebuilding Mount St. Helens" . Retrieved 2007-03-07.
  13. Brugman, Melinda M.; Austin Post (1981). "USGS Circular 850-D: Effects of Volcanism on the Glaciers of Mount St. Helens" . Retrieved 2013-08-31.
  14. 1 2 Wiggins, Tracy B.; Hansen, Jon D.; Clark, Douglas H. (2002). "Growth and flow of a new glacier in Mt. St. Helens Crater". Abstracts with Programs - Geological Society of America. 34 (5): 91.
  15. 1 2 Schilling, Steve P.; Paul E. Carrara; Ren A. Thompson; Eugene Y. Iwatsubo (2004). "Posteruption glacier development within the crater of Mount St. Helens, Washington, USA". Quaternary Research. 61 (3). Elsevier Science (USA): 325–329. Bibcode:2004QuRes..61..325S. doi:10.1016/j.yqres.2003.11.002. S2CID   128528280.
  16. McCandless, Melanie; Plummer, Mitchell; Clark, Douglas (2005). "Predictions of the growth and steady-state form of the Mount St. Helens Crater Glacier using a 2-D glacier model". Abstracts with Programs - Geological Society of America. 37 (7): 354.
  17. 1 2 "Mount St. Helens glacier (Crater Glacier) growing 50 feet per year". US Forest Service. 2004-09-20. Archived from the original on 2008-05-19. Retrieved 2008-06-08.
  18. "Loowit Falls". 2008-01-20. Retrieved 2008-12-15.
  19. 1 2 Patton, Vince (2002-11-09). "Birth of a Glacier; Forms in Mouth of NW Volcano". kgw.com. Archived from the original on 2011-11-23. Retrieved 2008-06-08.
  20. 1 2 Anderson Jr., Charlie. "New Glacier Forming in the Crater". Archived from the original on 2012-01-06. Retrieved 2007-09-26.
  21. Haugerud, R. A.; Harding, D. J.; Mark, L. E.; Zeigler, J.; Queija, V.; Johnson, S. Y. (December 2004). "Lidar measurement of topographic change during the 2004 eruption of Mount St. Helens, WA". AGU Fall Meeting Abstracts. 2004: V53D–01A. Bibcode:2004AGUFM.V53D..01H.
  22. Harris, Fire Mountains of the West (1988), page 212
  23. Harris, Fire Mountains of the West (1988), page 213
  24. Anderson Jr., Charlie. "Crater Ice 2002". Archived from the original on 2015-04-02. Retrieved 2008-06-08.
  25. 1 2 Anderson, Charles H. Jr.; Behrens, Christopher J.; Floyd, Gary A.; Vining, Mark R. (1998). "Crater firn caves of Mount St. Helens, Washington". Journal of Cave and Karst Studies. 60 (1): 44–50.
  26. 1 2 Anderson, Charles H. Jr.; Mark R. Vining (1999). "Observations of Glacial, Geomorphic, Biologic, and Mineralogic Developments in the Crater of Mount St. Helens, Washington". Washington Geology. 27 (2/3/4): 9–19.
  27. O'Connor, Jim E.; Dorsey, Rebecca J.; Madin, Ian (2009). Volcanoes to Vineyards: Geologic Field Trips Through the Dynamic Landscape of the Pacific Northwest. Geological Society of America. ISBN   978-0-8137-0015-1.
  28. Dininny, Shannon (2004-11-24). "Naming Mount St. Helens New Dome Confusing". LiveScience.com. Archived from the original on 16 March 2006. Retrieved 2007-03-07.
  29. Associated Press (2005-03-08). "Mount St. Helens Glacier Gets A Name But May Be Short-Lived". KIRO-TV.com. Archived from the original on 2005-03-10. Retrieved 2007-03-07.
  30. "U.S. Board on Geographic Names Docket 389" (PDF). 2005-06-01. Archived from the original (PDF) on September 22, 2006. Retrieved 2007-03-07.
  31. "U.S. Board on Geographic Names Quarterly Review List 390" (PDF). 2005-10-03. Archived from the original (PDF) on September 22, 2006. Retrieved 2007-03-07.
  32. "U.S. Board on Geographic Names Domestic Names Committee, 679th Meeting" (PDF). 2006-06-05. Archived from the original (PDF) on September 22, 2006. Retrieved 2007-02-28.
  33. 1 2 "U.S. Board on Geographic Names Domestic Names Committee, 680th Meeting" (PDF). 2006-07-13. Archived from the original (PDF) on November 16, 2006. Retrieved 2007-02-28.