Cryotherapy

Last updated

Cryotherapy, sometimes known as cold therapy, is the local or general use of low temperatures in medical therapy. Cryotherapy may be used to treat a variety of tissue lesions. [1] The most prominent use of the term refers to the surgical treatment, specifically known as cryosurgery or cryoablation. Cryosurgery is the application of extremely low temperatures to destroy abnormal or diseased tissue and is used most commonly to treat skin conditions.

Contents

Cryotherapy is used in an effort to relieve muscle pain, sprains and swelling after soft tissue damage or surgery. When a musculoskeletal injury occurs, the body sends signals to our inflammatory cells, macrophages, which release IGF-1. IGF-1 is a hormone-insulin-like growth factor which initiates the termination of damaged tissue. In some cases, this inflammatory response can be aggravated and cause increased swelling and edema, which can actually prolong the recovery process. [2] For decades, it has been commonly used to accelerate recovery in athletes after exercise. Cryotherapy decreases the temperature of tissue surfaces to minimize hypoxic cell death, edema accumulation, and muscle spasms. Minimising each or all of these ultimately alleviates discomfort and inflammation. [3] It can involve a range of treatments, from the application of ice packs or immersion in ice baths (generally known as cold therapy), to the use of cold chambers.

Cryotherapy chamber

Partial-body cryotherapy chamber by Vacuactivus CryoTherapy chamberr.jpg
Partial-body cryotherapy chamber by Vacuactivus

There are two types of cryochamber which differ in their mechanisms of action and their use. Partial-body cryotherapy makes use of liquid nitrogen to lower the temperature. The chamber used is an individual, tube-shaped enclosure that covers a person's body, but it has an open top to keep the head at room temperature. [4]

In contrast, the temperature of a whole body cryotherapy chamber is reduced electrically, and the user fully enters it, head included.

Cryotherapy is a specific type of low-temperature treatment used to reduce inflammation and its associated pain. [5]

Cryotherapy was developed in the 1970s by Japanese rheumatologist Toshima Yamaguchi [6] [7] and introduced to Europe, US and Australia in the 1980s [8] [9] and 1990s. [10] Both types of cryochamber decrease the skin temperature, but lower temperatures are achieved with whole-body cryotherapy than with partial-body cryotherapy, and might be considered more effective. [11]

Mechanism of action

When the body is subjected to extreme cooling, the blood vessels are narrowed which reduces blood flow to the areas of swelling. Once outside the cryogenic chamber, the vessels expand, and an increased presence of anti-inflammatory proteins (IL-10) is established in the blood. [12] The treatment typically involves exposing the individual to freezing, dry temperatures (at −40 °C) for 2 to 4 minutes in one of these chambers. [13] While in the cryotherapy chamber, blood flow is reduced in that injured area. This will reduce muscle spasms and soreness. This is important to activate the circulatory system to encourage healing and regenerate muscle fibers. [14]

Main uses

Proponents say that cryotherapy may reduce pain and inflammation, help with mental disorders, support exercise recovery and improve joint function. Cryotherapy chambers belong to the group of equipment associated with sports rehabilitation and wellness.

Cryosurgery

Medical cryotherapy gun Cryogun.jpg
Medical cryotherapy gun

Cryosurgery is the application of extreme cold to destroy abnormal or diseased tissue. The application of ultra-cold liquid causes damage to the treated tissue due to intracellular ice formation. The degree of damage depends upon the minimum temperature achieved and the rate of cooling. [16] Cryosurgery is used to treat a number of diseases and disorders, most especially skin conditions like warts, moles, skin tags and solar keratoses. Liquid nitrogen is usually used to freeze the tissues at the cellular level. The procedure is used often as it is relatively easy and quick, can be done in the doctors surgery, and is deemed quite low risk. If a cancerous lesion is suspected then excision rather than cryosurgery may be deemed more appropriate. [17] Contraindications to the use of cryosurgery include but are not limited to; using it over a neoplasm, someone with conditions that are worsened by exposure to cold (i.e. Raynaud's, urticaria), and poor circulation or no sensation in the area. [18] There are some precautions to using cryosurgery. They include someone with collagen vascular disease, dark-skinned individuals (due to high risk of hypopigmentation), and impaired sensation at the area being treated. [19]

Ice pack therapy

Ice pack therapy is a treatment of cold temperatures to an injured area of the body. Though the therapy is extensively used, and it is agreed that it alleviates symptoms, testing has produced conflicting results about its efficacy and possibility of producing undesirable results. [20] [21] [22] [23]

An ice pack is placed over an injured area and is intended to absorb heat of a closed traumatic or Edematous injury by using conduction to transfer thermal energy. The physiologic effects of cold application include immediate vasoconstriction with reflexive vasodilation, decreased local metabolism and enzymatic activity, and decreased oxygen demand. Cold decreases muscle spindle fiber activity and slows nerve conduction velocity; therefore, it is often used to decrease spasticity and muscle guarding. It is commonly used to alleviate the pain of minor injuries, as well as decrease muscle soreness. The use of ice packs in treatment decreases the blood flow most rapidly at the beginning of the cooling period, [24] this occurs as a result of vasoconstriction, the initial reflex sympathetic activity. Although the use of cryotherapy has been shown to aid in muscle recovery, some studies have highlighted that the degree of muscle cooling in humans is not significant enough to produce a considerable effect on muscle recovery. Based on previous research comparing human and animal models, the insufficient degree of cooling is due to larger limb size, more adipose tissue, and a higher muscle diameter in humans. [25]

Ice is not commonly used prior to rehabilitation or performance because of its known adverse effects to performance such as decreased myotatic reflex and force production, as well as a decrease in balance immediately following ice pack therapy for 20 minutes. [26] However, if ice pack therapy is applied for less than 10 minutes, performance can occur without detrimental effects. If the ice pack is removed at this time, athletes are sent back to training or competition directly with no decrease in performance. [27] Ice has also been shown to possibly slow and impair muscle protein synthesis and repair in recreational athletes. This is especially true for cold water immersion, but equivalent controlled studies have not been done to see if the same effects hold true for ice packs. Regardless, ice has been shown in studies to inhibit the uptake of dietary protein post-muscle conditioning exercise.[ citation needed ]

Although there are many positive effects of cryotherapy in athletes' short-term recovery, in recent years, there has been much controversy regarding whether cryotherapy is actually beneficial or may be causing the opposite effect. While inflammation that occurs post-injury or from a damaging exercise may be detrimental to secondary tissue, it is beneficial for the structural and functional repair of the damaged tissue. Therefore, some researchers are now recommending that ice not be used so as not to delay the natural healing process following an injury. The original RICE (rest, ice, compression, elevation) method was rescinded because the inflammatory response is necessary for the healing process, and this practice may delay healing instead of facilitating it. Animal studies also show that a disrupted inflammatory stage of healing may lead to impaired tissue repair and redundant collagen synthesis. [28]

There is a study that concludes that cryotherapy has a positive impact on the short-term recovery of athletes. Cryotherapy helped manage muscle soreness and facilitate recovery within the first 24 hours following a sport-related activity. Athletes who use cryotherapy within the first 24 hours to alleviate pain recovered at a faster rate than athletes who did not use cryotherapy after their sport-related activity. [3]

Cryotherapy following total knee replacement

Post-surgical management following total knee replacement surgery may include cryotherapy with the goal of helping with pain management and blood loss following surgery. [29] Cryotherapy is applied using ice, cold water, or gel packs, sometimes in specialized devices that surround the skin and surgical site (but keeps the surgical site clean). [29] Evidence from clinical trials regarding the effectiveness of cryotherapy is weak and because of this, the use of cryotherapy may not be justified. [29] Weak evidence indicates that cryotherapy used postoperatively may be associated with a small decrease in blood loss and pain following the surgery. No clinically significant improvements in range of motion have been reported. There are not many side effects or adverse effects reported with this intervention. [29]

Traditional vs continuous cryotherapy after total knee arthroplasty

Cryotherapy, the withdrawal of heat from an individual's body via the application of cold modalities to reduce tissue temperature, has been known as a treatment intervention for the overall management of musculoskeletal injuries, especially when it comes to relieving pain and improving functional outcomes after total knee arthroplasty. Over the years, new cryotherapy devices that aim to maintain a fixed temperature for a prolonged time have become more apparent, thereby questioning both the efficacy and therapeutic outcomes of continuous cryotherapy with the ones of traditional cryotherapy. [30]

The most concurrent systematic review and meta-analysis aimed to compare continuous and traditional applications of cryotherapy on patients who have undergone total knee arthroplasty, specifically in pain intensity, analgesics consumption, swelling, blood loss, postoperative range of motion (PROM), and length of hospital stay. According to the study's findings, there were no statistically significant differences in pain intensity, analgesic consumption, swelling, blood loss, PROM, and length of hospital stay between the continuous and traditional cryotherapy groups. At the same time, the study acknowledges its limitations, including lack of blinding, substantial heterogeneity, and modest sample sizes in eligible trials. [30]

In addition to such findings, the study compared the financial implications of both continuous cryotherapy and traditional cryotherapy. They found that continuous cryotherapy may be subject to additional costs not covered by insurance. In contrast, the cost of traditional cryotherapy is nearly negligible. [30]

With that in mind, continuous cryotherapy was shown to have produced similar clinical effects to traditional cryotherapy; the only difference being the additional costs that insurance companies do not cover with continuous cryotherapy. Therefore, the researchers state the current evidence isn’t substantial enough to support the theoretical cost-effectiveness of continuous cryotherapy after total knee arthroplasty. [30]

Cold spray anesthetics

In addition to their use in cryosurgery, several types of cold aerosol sprays are used for short-term pain relief. Unlike other cold modalities, it does not produce similar physiological effects due to the fact it decreases skin temperature, not muscle temperature. It reflexively inhibits underling muscle by using evaporation to cool the area. [31] Ordinary spray cans containing tetrafluoroethane, dimethyl ether, or similar substances, are used to numb the skin prior to or possibly in place of local anesthetic injections, and prior to other needles, small incisions, sutures, and so on. Other products containing chloroethane are used to ease sports injuries, similar to ice pack therapy. Cold aerosol spray could also be used to relieve trigger points and improve range of motion. After applying the cold spray, one can stretch the muscle and will then have improved mobility and a decrease in pain immediately. [32] [33] [34] However, this is only a short-term effect as the pain relief and improved range of motion can wear off within a minute. [35]

Whole body cryotherapy

Cryotherapy patients during preparation of treatment of c. 3 minutes Cryo-Therapy Chamber Entry.JPG
Cryotherapy patients during preparation of treatment of c. 3 minutes

An increasing amount of research is done on the effects of whole-body cryotherapy on exercise, beauty, and health. Research is often inconsistent because of the usage of the different types of cryo-chambers, and different treatment periods. However, it becomes increasingly clear that whole body cryotherapy has a positive effect on muscle soreness and decreases the recovery time after exercise. [36] Some older papers show inconsistencies in the effects. [10]

Cryotherapy is also increasingly used as a non-drug treatment against rheumatoid arthritis, stress, anxiety, or chronic pain, multiple sclerosis and fibromyalgia. [4] Studies for these, and other diseases (Alzheimer's, migraines), are ongoing although more evidence becomes available on the positive effects of Whole Body Cryotherapy. The FDA points out that the effects of Whole Body Cryotherapy lacks evidence and should be researched more. [37]

Cryotherapy treatment involves exposing individuals to extremely cold dry air (below −100 °C) for two to four minutes. Yet, three to four minute exposure to whole body cryotherapy is different from a one to two minute exposure. It is more beneficial to expose for a shorter amount of time to increase therapeutic benefits. Longer durations have negative effects on thermal sensation, tissue oxygenation, and blood volume. Also, the amount of sessions is an important part of the healing process. Just one session will not exhibit significant effects. A minimum of twenty sessions is required. Thirty sessions is recommended for optimal effects though. [38] To achieve the subzero temperatures required for whole body cryotherapy, two methods are typically used: liquid nitrogen and refrigerated cold air. During these exposures, individuals wear minimal clothing, which usually consists of shorts for males, and shorts and a crop top for females. Gloves, a woollen headband covering the ears, and a nose and mouth mask, in addition to dry shoes and socks, are commonly worn to reduce the risk of cold-related injury. The first whole body cryotherapy chamber was built in Japan in the late 1970s, introduced to Europe in the 1980s, and has been used in the US and Australia in the past decade. [10]

Adverse effects

Reviews of whole-body cryotherapy have called for research studies to implement active surveillance of adverse events, which are suspected of being underreported. [10] [39] If the cold temperatures are produced by evaporating liquid nitrogen, there is the risk of inert gas asphyxiation as well as frostbite. [40] However, these risks are irrelevant in the electronically operated chambers.

Contraindications

Contraindications include patients with cardiovascular disease, arterial hypertension, acute infectious diseases, seizures, cold allergy, and some psychiatric disorders. [41]

Partial body

Partial body cryotherapy devices also exist. If the cold temperatures are produced by evaporating liquid nitrogen, there is the risk of inert gas asphyxiation as well as frostbite. [40]

See also

Related Research Articles

<span class="mw-page-title-main">Massage</span> Manipulation of the body through stretching and pressure

Massage is the rubbing or kneading of the body's soft tissues. Massage techniques are commonly applied with hands, fingers, elbows, knees, forearms, feet or a device. The purpose of massage is generally for the treatment of body stress or pain. In European countries, a person professionally trained to give massages is traditionally known as a masseur (male) or masseuse (female). In the United States, these individuals are often referred to as "massage therapists". In some provinces of Canada, they are called "registered massage therapists."

<span class="mw-page-title-main">Keloid</span> Medical condition

Keloid, also known as keloid disorder and keloidal scar, is the formation of a type of scar which, depending on its maturity, is composed mainly of either type III (early) or type I (late) collagen. It is a result of an overgrowth of granulation tissue at the site of a healed skin injury which is then slowly replaced by collagen type I. Keloids are firm, rubbery lesions or shiny, fibrous nodules, and can vary from pink to the color of the person's skin or red to dark brown in color. A keloid scar is benign and not contagious, but sometimes accompanied by severe itchiness, pain, and changes in texture. In severe cases, it can affect movement of skin. In the United States keloid scars are seen 15 times more frequently in people of sub-Saharan African descent than in people of European descent. There is a higher tendency to develop a keloid among those with a family history of keloids and people between the ages of 10 and 30 years.

<span class="mw-page-title-main">Rotator cuff</span> Group of muscles

The rotator cuff is a group of muscles and their tendons that act to stabilize the human shoulder and allow for its extensive range of motion. Of the seven scapulohumeral muscles, four make up the rotator cuff. The four muscles are:

<span class="mw-page-title-main">Frostbite</span> Effect of low temperature on skin and other tissues

Frostbite is a skin injury that occurs when exposed to extremely low temperatures, causing the freezing of the skin or other tissues, commonly affecting the fingers, toes, nose, ears, cheeks and chin areas. Most often, frostbite occurs in the hands and feet. The initial symptoms are typically a feeling of cold and tingling or numbing. This may be followed by clumsiness with a white or bluish color to the skin. Swelling or blistering may occur following treatment. Complications may include hypothermia or compartment syndrome.

<span class="mw-page-title-main">Sprain</span> Damage to one or more ligaments in a joint

A sprain is a soft tissue injury of the ligaments within a joint, often caused by a sudden movement abruptly forcing the joint to exceed its functional range of motion. Ligaments are tough, inelastic fibers made of collagen that connect two or more bones to form a joint and are important for joint stability and proprioception, which is the body's sense of limb position and movement. Sprains may be mild, moderate, or severe, with the latter two classes involving some degree of tearing of the ligament. Sprains can occur at any joint but most commonly occur in the ankle, knee, or wrist. An equivalent injury to a muscle or tendon is known as a strain.

Delayed onset muscle soreness (DOMS) is the pain and stiffness felt in muscles after unaccustomed or strenuous exercise. The soreness is felt most strongly 24 to 72 hours after the exercise. It is thought to be caused by eccentric (lengthening) exercise, which causes small-scale damage (microtrauma) to the muscle fibers. After such exercise, the muscle adapts rapidly to prevent muscle damage, and thereby soreness, if the exercise is repeated.

<span class="mw-page-title-main">Cryosurgery</span> Cauterization by freezing tissue

Cryosurgery is the use of extreme cold in surgery to destroy abnormal or diseased tissue; thus, it is the surgical application of cryoablation. Cryosurgery has been historically used to treat a number of diseases and disorders, especially a variety of benign and malignant skin conditions.

<span class="mw-page-title-main">Shin splints</span> Medical condition

A shin splint, also known as medial tibial stress syndrome, is pain along the inside edge of the shinbone (tibia) due to inflammation of tissue in the area. Generally this is between the middle of the lower leg and the ankle. The pain may be dull or sharp, and is generally brought on by high-impact exercise that overloads the tibia. It generally resolves during periods of rest. Complications may include stress fractures.

<span class="mw-page-title-main">Strain (injury)</span> Injury due to slight tearing of a muscle or tendon

A strain is an acute or chronic soft tissue injury that occurs to a muscle, tendon, or both. The equivalent injury to a ligament is a sprain. Generally, the muscle or tendon overstretches and partially tears, under more physical stress than it can withstand, often from a sudden increase in duration, intensity, or frequency of an activity. Strains most commonly occur in the foot, leg, or back. Immediate treatment typically includes five steps abbreviated as P.R.I.C.E.: protection, rest, ice, compression, elevation.

Heat therapy, also called thermotherapy, is the use of heat in therapy, such as for pain relief and health. It can take the form of a hot cloth, hot water bottle, ultrasound, heating pad, hydrocollator packs, whirlpool baths, cordless FIR heat therapy wraps, and others. It can be beneficial to those with arthritis and stiff muscles and injuries to the deep tissue of the skin. Heat may be an effective self-care treatment for conditions like rheumatoid arthritis.

<span class="mw-page-title-main">Sprained ankle</span> Medical condition

A sprained ankle is an injury where sprain occurs on one or more ligaments of the ankle. It is the most commonly occurring injury in sports, mainly in ball sports such as basketball, volleyball, football, and tennis.

<span class="mw-page-title-main">Anterior cruciate ligament injury</span> Ligament injury near the knee

An anterior cruciate ligament injury occurs when the anterior cruciate ligament (ACL) is either stretched, partially torn, or completely torn. The most common injury is a complete tear. Symptoms include pain, an audible cracking sound during injury, instability of the knee, and joint swelling. Swelling generally appears within a couple of hours. In approximately 50% of cases, other structures of the knee such as surrounding ligaments, cartilage, or meniscus are damaged.

<span class="mw-page-title-main">Cryoablation</span> Process using extreme cold to destroy tissue

Cryoablation is a process that uses extreme cold to destroy tissue. Cryoablation is performed using hollow needles (cryoprobes) through which cooled, thermally conductive, fluids are circulated. Cryoprobes are positioned adjacent to the target in such a way that the freezing process will destroy the diseased tissue. Once the probes are in place, the attached cryogenic freezing unit removes heat from ("cools") the tip of the probe and by extension from the surrounding tissues.

Cold compression therapy, also known as hilotherapy, combines two of the principles of rest, ice, compression, elevation to reduce pain and swelling from a sports or activity injury to soft tissues and is recommended by orthopedic surgeons following surgery. The therapy is especially useful for sprains, strains, pulled muscles and pulled ligaments.

<span class="mw-page-title-main">RICE (medicine)</span> Medical acronym

RICE is a mnemonic acronym for the four elements of a treatment regimen that was once recommended for soft tissue injuries: rest, ice, compression, and elevation. It was considered a first-aid treatment rather than a cure and aimed to control inflammation. It was thought that the reduction in pain and swelling that occurred as a result of decreased inflammation helped with healing. The protocol was often used to treat sprains, strains, cuts, bruises, and other similar injuries. Ice has been used for injuries since at least the 1960s, in a case where a 12-year-old boy needed to have a limb reattached. The limb was preserved before surgery by using ice. As news of the successful operation spread, the use of ice to treat acute injuries became common.

Contrast bath therapy is a form of treatment where a limb or the entire body is immersed in hot water followed by the immediate immersion of the limb or body in cold ice water. This procedure is repeated several times, alternating hot and cold. The only evidence of benefit is anecdotal and no plausible mechanism has been confirmed.

<span class="mw-page-title-main">Ice bath</span> Therapeutic body immersion in iced water

In sports therapy, an ice bath, or sometimes cold-water immersion or cold therapy, is a training regimen usually following a period of intense exercise in which a substantial part of a human body is immersed in a bath of ice or ice-water for a limited duration.

A hypothermia cap is a therapeutic device used to cool the human scalp. Its most prominent medical applications are in preventing or reducing alopecia in chemotherapy, and for preventing cerebral palsy in babies born with neonatal encephalopathy caused by hypoxic-ischemic encephalopathy (HIE). It can also be used to provide neuroprotection after cardiac arrest, to inhibit stroke paralysis, and as cryotherapy for migraine headaches.

<span class="mw-page-title-main">Freeze spray</span> Aerosol spray for rapid cooling

Freeze spray is a type of aerosol spray product containing a liquified gas used for rapidly cooling surfaces, in medical and industrial applications. It is usually sold in hand-held spray cans. It may consist of various substances, which produce different temperatures, depending on the application.

<span class="mw-page-title-main">Skin temperature</span> Temperature at the outer surface of a living body

Skin temperature is the temperature of the outermost surface of the body. Normal human skin temperature on the trunk of the body varies between 33.5 and 36.9 °C, though the skin's temperature is lower over protruding parts, like the nose, and higher over muscles and active organs. Recording skin temperature presents extensive difficulties. Although it is not a clear indicator of internal body temperature, skin temperature is significant in assessing the healthy function of skin. Some experts believe the physiological significance of skin temperature has been overlooked, because clinical analysis has favoured measuring temperatures of the mouth, armpit, and/or rectum. Temperatures of these parts typically are consistent with internal body temperature.

References

  1. Cryotherapy at eMedicine
  2. Wang, Zi-Ru; Ni, Guo-Xin (16 June 2021). "Is it time to put traditional cold therapy in rehabilitation of soft-tissue injuries out to pasture?". World Journal of Clinical Cases. 9 (17): 4116–4122. doi: 10.12998/wjcc.v9.i17.4116 . ISSN   2307-8960. PMC   8173427 . PMID   34141774.
  3. 1 2 Jinnah, Alexander H; Luo, Tianyi David; Mendias, Christopher; Freehill, Michael (May 2019). "Cryotherapy duration is critical in short-term recovery of athletes: a systematic review". Journal of ISAKOS. 4 (3): 131–136. doi: 10.1136/jisakos-2018-000259 . S2CID   198304421. ProQuest   2275802941.
  4. 1 2 Bouzigon R, Grappe F, Ravier G, Dugue B (October 2016). "Whole- and partial-body cryostimulation/cryotherapy: Current technologies and practical applications". Journal of Thermal Biology. 61: 67–81. doi:10.1016/j.jtherbio.2016.08.009. PMID   27712663.
  5. Lombardi G, Ziemann E, Banfi G (2 May 2017). "Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature". Frontiers in Physiology. 8: 258. doi: 10.3389/fphys.2017.00258 . PMC   5411446 . PMID   28512432.
  6. "Elite Athletes Are Utilizing Cryotherapy For Recovery". patients.scnm.edu. Retrieved 23 February 2021.
  7. "Why are people freezing their bodies?". theweek.com. 18 April 2017. Retrieved 23 February 2021.
  8. Romuk E, Skrzep-Poloczek B, Wiśniowska B, Owczarek AJ, Choręza P, Sieroń A, Birkner E, Stygar D Biomed Res Int, 2019:2065346, 15 May 2019 Cited by: 1 article | PMID   31223612 | PMCID: PMC6541937
  9. The effect of cryotherapy on total antioxidative capacity in patients with active seropositive rheumatoid arthritis. Hirvonen H, Kautiainen H, Moilanen E, Mikkelsson M, Leirisalo-Repo M Rheumatol Int, 37(9):1481–1487, 11 July 2017 Cited by: 6 articles | PMID   28698947
  10. 1 2 3 4 Costello JT, Baker PR, Minett GM, Bieuzen F, Stewart IB, Bleakley C (September 2015). "Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults". The Cochrane Database of Systematic Reviews. 2015 (9): CD010789. doi:10.1002/14651858.CD010789.pub2. PMC   9579836 . PMID   26383887.
  11. Polidori, G.; Taiar, R.; Boyer, F.C. (20 July 2018). "Infrared thermography for assessing skin temperature differences between Partial Body Cryotherapy and Whole Body Cryotherapy devices at -140 °C". Infrared Physics & Technology . 93: 158–161. Bibcode:2018InPhT..93..158P. doi:10.1016/j.infrared.2018.07.025. ISSN   1350-4495. S2CID   126379520.
  12. Lubkowska A, Szyguła Z, Chlubek D, Banfi G (September 2011). "The effect of prolonged whole-body cryostimulation treatment with different amounts of sessions on chosen pro- and anti-inflammatory cytokines levels in healthy men". Scandinavian Journal of Clinical and Laboratory Investigation. 71 (5): 419–425. doi:10.3109/00365513.2011.580859. PMID   21574854. S2CID   37200856.
  13. Douzi W, Dupuy O, Tanneau M, Boucard G, Bouzigon R, Dugué B (July 2019). "3-min whole body cryotherapy/cryostimulation after training in the evening improves sleep quality in physically active men". European Journal of Sport Science. 19 (6): 860–867. doi:10.1080/17461391.2018.1551937. PMID   30551730. S2CID   54632568.
  14. Wang, Zi-Ru; Ni, Guo-Xin (16 June 2021). "Is it time to put traditional cold therapy in rehabilitation of soft-tissue injuries out to pasture?". World Journal of Clinical Cases. 9 (17): 4116–4122. doi: 10.12998/wjcc.v9.i17.4116 . ISSN   2307-8960. PMC   8173427 . PMID   34141774.
  15. Klimenko T, Ahvenainen S, Karvonen SL (June 2008). "Whole-body cryotherapy in atopic dermatitis". Archives of Dermatology. 144 (6): 806–808. doi: 10.1001/archderm.144.6.806 . PMID   18559779.
  16. Andrews MD (May 2004). "Cryosurgery for common skin conditions". American Family Physician. 69 (10): 2365–2372. PMID   15168956.
  17. "Information about Non-Melanoma Skin Cancers". Skcin – The Karen Clifford Skin Cancer Charity. Retrieved 29 July 2017.
  18. Prohaska, Joseph; Jan, Abdul H. (2023), "Cryotherapy", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   29493944 , retrieved 30 March 2023
  19. Sharma, Vinod; Khandpur, Sujay (July–August 2009). "Guidelines for cryotherapy". ProQuest: 90–100. ProQuest   195116522.
  20. Bleakley C, McDonough S, MacAuley D (2004). "The use of ice in the treatment of acute soft-tissue injury: a systematic review of randomized controlled trials". The American Journal of Sports Medicine. 32 (1): 251–261. doi:10.1177/0363546503260757. PMID   14754753. S2CID   23999521.
  21. Mac Auley DC (July 2001). "Ice therapy: how good is the evidence?". International Journal of Sports Medicine. 22 (5): 379–384. doi:10.1055/s-2001-15656. PMID   11510876. S2CID   58828671.
  22. Thorsson O (March 2001). "[Cold therapy of athletic injuries. Current literature review]". Läkartidningen. 98 (13): 1512–1513. PMID   11330146.
  23. Hohenauer E, Taeymans J, Baeyens JP, Clarys P, Clijsen R (2015). "The Effect of Post-Exercise Cryotherapy on Recovery Characteristics: A Systematic Review and Meta-Analysis". PLOS ONE. 10 (9): e0139028. Bibcode:2015PLoSO..1039028H. doi: 10.1371/journal.pone.0139028 . PMC   4586380 . PMID   26413718.
  24. Swenson C, Swärd L, Karlsson J (August 1996). "Cryotherapy in sports medicine". Scandinavian Journal of Medicine & Science in Sports. 6 (4): 193–200. doi:10.1111/j.1600-0838.1996.tb00090.x. PMID   8896090. S2CID   32962326.
  25. Tiidus, Peter M. (1 June 2015). "Alternative treatments for muscle injury: massage, cryotherapy, and hyperbaric oxygen". Current Reviews in Musculoskeletal Medicine. 8 (2): 162–167. doi:10.1007/s12178-015-9261-3. ISSN   1935-9748. PMC   4596174 . PMID   25724774.
  26. Cross KM, Wilson RW, Perrin DH (April 1996). "Functional performance following an ice immersion to the lower extremity". Journal of Athletic Training. 31 (2): 113–116. PMC   1318440 . PMID   16558383.
  27. Saam F, Leidinger B, Tibesku CO (March 2008). "[The influence of cryotherapy of the ankle on static balance]". Sportverletzung Sportschaden. 22 (1): 45–51. doi:10.1055/s-2007-963601. PMID   18350484. S2CID   260331309.
  28. Kwiecien, Susan Y.; McHugh, Malachy P. (1 August 2021). "The cold truth: the role of cryotherapy in the treatment of injury and recovery from exercise". European Journal of Applied Physiology. 121 (8): 2125–2142. doi:10.1007/s00421-021-04683-8. ISSN   1439-6327. PMID   33877402. S2CID   233311582.
  29. 1 2 3 4 Aggarwal, Ashwin; Adie, Sam; Harris, Ian A.; Naylor, Justine (14 September 2023). "Cryotherapy following total knee replacement". The Cochrane Database of Systematic Reviews. 9 (9): CD007911. doi:10.1002/14651858.CD007911.pub3. ISSN   1469-493X. PMC  10500624. PMID   37706609.
  30. 1 2 3 4 Liu, Meng-Meng; Tian, Mian; Luo, Changqi; Wang, Shicheng; Shao, Long (11 January 2023). "Continuous cryotherapy vs. traditional cryotherapy after total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials". Frontiers in Surgery. 9. doi: 10.3389/fsurg.2022.1073288 . ISSN   2296-875X. PMC   9874230 . PMID   36713652.
  31. Bostelman, Chelsea (1 October 2018). "Vapocoolant Sprays: Use With Totally Implanted Venous Access Devices". Clinical Journal of Oncology Nursing. 22 (5): 561–563. doi:10.1188/18.CJON.561-563. PMID   30239525. S2CID   52311236. ProQuest   2113758283.
  32. Khan, Urooj; Akhter, Saeed; Khan, Muhammad; Baig, Aftab Ahmed Mirza (1 September 2021). "Effectiveness of ischemic compression pressure versus spray and stretch technique in the management of active myofascial trigger points of trapezius muscle". International Journal of Endorsing Health Science Research (IJEHSR). 9 (3): 315–321. doi: 10.29052/IJEHSR.v9.i3.2021.315-321 . ISSN   2310-3841.
  33. Dalvandi, Asghar; Ranjbar, Hadi; Hatamizadeh, Maryam; Rahgoi, Abolfazl; Bernstein, Colleen (August 2017). "Comparing the effectiveness of vapocoolant spray and lidocaine/procaine cream in reducing pain of intravenous cannulation: A randomized clinical trial". The American Journal of Emergency Medicine. 35 (8): 1064–1068. doi:10.1016/j.ajem.2017.02.039. PMID   28285862. S2CID   205324322.
  34. Kostopoulos, Dimitrios; Rizopoulos, Konstantine (1 April 2008). "Effect of topical aerosol skin refrigerant (Spray and Stretch technique) on passive and active stretching". Journal of Bodywork and Movement Therapies. 12 (2): 96–104. doi:10.1016/j.jbmt.2007.11.005. ISSN   1360-8592. PMID   19083662.
  35. Farion, K. J.; Splinter, K. L.; Newhook, K.; Gaboury, I.; Splinter, W. M. (12 June 2008). "The effect of vapocoolant spray on pain due to intravenous cannulation in children: a randomized controlled trial". Canadian Medical Association Journal. 179 (1): 31–36. doi:10.1503/cmaj.070874. ISSN   0820-3946. PMC   3267474 . PMID   18591524.
  36. Lombardi G, Ziemann E, Banfi G (2017). "Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature". Frontiers in Physiology. 8 (258): 258. doi: 10.3389/fphys.2017.00258 . PMC   5411446 . PMID   28512432.
  37. "Whole Body Cryotherapy (WBC): A "Cool" Trend that Lacks Evidence, Poses Risks". www.fda.gov. U.S. Food and Drug Administration. 5 July 2016. Retrieved 6 January 2019.
  38. Lombardi, Giovanni; Ziemann, Ewa; Banfi, Giuseppe (2 May 2017). "Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature". Frontiers in Physiology. 8: 258. doi: 10.3389/fphys.2017.00258 . ISSN   1664-042X. PMC   5411446 . PMID   28512432.
  39. Bleakley CM, Bieuzen F, Davison GW, Costello JT (March 2014). "Whole-body cryotherapy: empirical evidence and theoretical perspectives". Open Access Journal of Sports Medicine. 5: 25–36. doi: 10.2147/OAJSM.S41655 . PMC   3956737 . PMID   24648779.
  40. 1 2 "The spread of cryotherapy". The Economist. 23 March 2017. Retrieved 27 March 2017.
  41. Missmann, M.; Himsl, M.; Mur, E.; Ulmer, H.; Marschang, P. (1 February 2016). "Impact of Whole Body Cryotherapy at −110 °C on Subjects with Arterial Hypertension". Archivum Immunologiae et Therapiae Experimentalis. 64 (1): 75–82. doi:10.1007/s00005-015-0363-9. ISSN   1661-4917. PMID   26408646. S2CID   253597757.