Digital access carrier system

Last updated

Digital access carrier system (DACS) is the name used by British Telecom (BT Group plc) in the United Kingdom for a 0+2 pair gain system.

Contents

Two Telspec DACS remote units mounted on a pole RUPOLE.JPG
Two Telspec DACS remote units mounted on a pole

Usage

For almost as long as telephones have been a common feature in homes and offices, telecommunication companies have regularly been faced with a situation where demand in a particular street or area exceeds the number of physical copper pairs available from the pole to the exchange.

Until the early 1980s, this situation was often dealt with by providing shared or 'party' lines, which were connected to multiple customers. This raised privacy problems since any subscriber connected to the line could listen to (or indeed, interrupt) another subscriber's call.

With advances in the size, price, and reliability of electronic equipment, it eventually became possible to provide two normal subscriber lines over one copper pair, eliminating the need for party lines. The more modern ISDN technology based digital systems that perform this task are known in Britain by the generic name 'DACS'.

DACS works by digitising the analogue signal and sending the combined digital information for both lines over the same copper pair between the exchange and the pole. The cost of the DACS equipment is significantly less than the cost of installing additional copper pairs.

Overview

The DACS system consists of three main parts:

  1. The exchange unit (EU), which connects multiple pairs of analogue lines to their corresponding single digital lines. One Telspec EU rack connects as many as 80 analogue lines over 40 digital copper pairs.
  2. The copper pair between the exchange and the remote unit, carrying the digital signal between the exchange unit and the remote unit.
  3. The remote unit (RU), which connects two analogue customer lines to one digital copper pair. The RUs are usually to be found on poles within a few hundred metres of the subscribers' homes or businesses.
Populated DACS PCBs Telspec Remote Unit PCB.jpg
Populated DACS PCBs

Advantages

  1. Because it uses a digital signal along most of the distance between subscriber and exchange, DACS is less prone to electrical interference than the more usual analogue line.
  2. The DACS system has built-in monitoring from the exchange. An alert is generated if the connection is lost or errors occur. This contrasts with a conventional analogue line, where the fault will usually not be known until a customer complains.

DACS and modems

The 56kbit/s speed of analogue modems can only be achieved if there is a single digital to analogue conversion in the route from the ISP to the end user. Since DACS involves an additional conversion to digital, and then back to analogue, this means that the maximum possible bitrate over a DACS line is 33.6 kbit/s. Furthermore, many 56 kbit/s modems are unable to successfully negotiate even this speed over a DACS line. DSL broadband internet connections cannot work on a DACS line as they rely on a copper pair running all the way to the telephone exchange.

Since BT's traditional telephone line service is contractually only required to support voice and fax communication, BT are not obliged to remove a DACS because of problems with 56 kbit/s modems.

Technical

This section contains more technical detail on the 3 main subsystems that make DACS.

  1. The exchange equipment (EU), which converts 2 analogue lines to a digital trunk. One Telspec EU rack takes up to 80 analogue lines, 10 per ALC (Analogue Line Card), and produces up to 40 digital trunks, 5 per DLC card. It consists of 1 SMAC (System Maintenance and Clocks) card, up to 8 ALCs and up to 8 DLCs. The SMAC card contains, amongst other things:
    • The main 48 V to 5 V converter to supply the digital circuitry in the rack.
    • Fault mimics to present to the exchange's test equipment.
    • An analogue modem to receive data calls for remote diagnostics.
    • A battery backed real-time clock and memory to store the time and type of fault events like bit errors.
    • A 25-pin RS232 connector for local access to the SMAC card's diagnostic logs.
    • A 2-digit 7-segment display and buttons, which forms a basic MMI, for an engineer without a terminal.
    • Circuitry to generate the various clocks and pulses needed to keep the ISDN chipsets and codecs working together.

    Pulling out the SMAC card on a live fully populated rack could make all 80 subscribers' lines ring briefly.

    Again, one ECI EU rack takes up to 80 analogue lines, but has just one type of card, which supports 4 analogue lines, and 2 digital trunks and RUs.
  2. The copper pair between the EU and RU, which carries the 2B1Q signalling and the 140 V DC for powering the RU and subscribers' telephones. The 140 V DC is not applied to the line until an RU is detected so that engineers do not get a shock. It is also removed as soon as the RU is disconnected, again for safety. The RU is distinguished from a phone or line fault by the 8 mA it draws when powered from a 48 V source. 8 mA was chosen because a working phone never draws a continuous 8 mA under normal line conditions. Although DACS (1 + 2) uses the same 2B1Q signalling as basic rate ISDN, there are some significant differences:
    • A DACS call travels most of the way from the subscriber to the exchange digitally, it is converted back to analogue to interface to the telephone exchange line card, i.e. ISDN has a digital interface at the exchange end and the subscriber end, DACS has an analogue interface at both the exchange end and the subscriber end.
    • ISDN and DACS use different D channel signalling.
    • DACS has up to 140 V DC on the digital telephone line as opposed to the usual ISDN voltages of 48 V or 90 V.
  3. The RU, which converts the digital trunk back to two analogue trunks. The RUs are usually to be found within a few hundred metres of the subscribers' homes or businesses (either up a pole or in a manhole), unless both lines belong to the same subscriber, where the RU (internal) could be on the subscriber's premises. There are 3 basic types of Telspec RU: internal (skirting board mountable), external (pole mount) and underground (for manhole). The remote unit contains a mini test head that is capable of testing both lines between the RU and subscriber for faults. It then communicates the results back to the EU digitally, where mimics are presented to the normal exchange testing equipment. DACS2 provides on and off hook Caller ID (CLI), which means that an audio path is maintained between the exchange and subscriber even if the subscriber is on hook. Line reversals are also communicated between exchange and subscriber. Telspec and ECI RUs have been known to work from each other's EU, but different gain plans as well as subtle signalling and training differences mean a less than perfect telephone service is provided.

Who makes it?

BT sourced DACS from two different companies: Telspec [1] and ECI. [2] Each BT region installed either one or the other; e.g. in South Wales, ECI DACS is fitted, while in Kent, Telspec DACS is used.

Definitions

WB900 – an analogue radio frequency based system that did not support even low speed data communications. Installed from the early 1980s. Now rarely encountered.

DACS1 – first generation digital system that did not support CLI but supported low-speed data communication devices such as fax machines. Installed from around 1990. DACS1 is no longer used in new installations.

DACS2 – released in the mid 1990s, DACS2 was an upgrade to DACS1 with support for CLI and higher data speeds (but see below). DACS2 is fundamentally similar to DACS1 in operation.

DACS – DACS1 and DACS2 are commonly known simply as 'DACS'. Most DACS installations in the UK are now DACS2.

How did WB900 work?

Before DACS, WB900 (a 1 + 1 analogue carrier system) was used. The first subscriber's phone (called the 'audio customer') would be connected as normal. The second subscriber (called the 'carrier customer') would have his phone calls modulated on to an RF carrier or Carrier wave on the same physical phone line at around 40 kHz – high enough not to be noticeable to the audio customer.

See also

Notes

  1. "Home". telspec.co.uk.
  2. "Home". ecitele.com.

Related Research Articles

Digital Access Signalling System 2 (DASS2) is an obsolescent protocol defined by British Telecom for digital links to PSTN based on ISDN. Although still available on request, it has been superseded by ETS 300 102 ("EuroISDN").

<span class="mw-page-title-main">ISDN</span> Set of communication standards

Integrated Services Digital Network (ISDN) is a set of communication standards for simultaneous digital transmission of voice, video, data, and other network services over the digitalised circuits of the public switched telephone network. Work on the standard began in 1980 at Bell Labs and was formally standardized in 1988 in the CCITT "Red Book". By the time the standard was released, newer networking systems with much greater speeds were available, and ISDN saw relatively little uptake in the wider market. One estimate suggests ISDN use peaked at a worldwide total of 25 million subscribers at a time when 1.3 billion analog lines were in use. ISDN has largely been replaced with digital subscriber line (DSL) systems of much higher performance.

Digital subscriber line is a family of technologies that are used to transmit digital data over telephone lines. In telecommunications marketing, the term DSL is widely understood to mean asymmetric digital subscriber line (ADSL), the most commonly installed DSL technology, for Internet access.

Telephony is the field of technology involving the development, application, and deployment of telecommunication services for the purpose of electronic transmission of voice, fax, or data, between distant parties. The history of telephony is intimately linked to the invention and development of the telephone.

<span class="mw-page-title-main">Local loop</span> In telephony, the last part of the connection to the customer

In telephony, the local loop is the physical link or circuit that connects from the demarcation point of the customer premises to the edge of the common carrier or telecommunications service provider's network.

<span class="mw-page-title-main">Remote concentrator</span>

In modern telephony a remote concentrator, remote concentrator unit (RCU), or remote line concentrator (RLC) is a concentrator at the lowest level in the telephone switch hierarchy.

Plain Old Telephone Service (POTS), or Plain Ordinary Telephone System, is a retronym for voice-grade telephone service employing analog signal transmission over copper loops. Originally POTS stood for Post Office Telephone Service as early phone lines in most parts of the world were operated directly by the local Post Office.

<span class="mw-page-title-main">DSLAM</span> Network device that connects DSL interfaces to a digital communications channel

A digital subscriber line access multiplexer is a network device, often located in telephone exchanges, that connects multiple customer digital subscriber line (DSL) interfaces to a high-speed digital communications channel using multiplexing techniques. Its cable internet (DOCSIS) counterpart is the cable modem termination system.

ISDN Digital Subscriber Line (IDSL) uses ISDN-based digital subscriber line technology to provide a data communication channel across existing copper telephone lines at a rate of 144 kbit/s, slightly higher than a bonded dual channel ISDN connection at 128 kbit/s. The digital transmission bypasses the telephone company's central office equipment that handles analogue signals. IDSL uses the ISDN grade loop without Basic Rate Interface in ISDN transmission mode. The benefits of IDSL over ISDN are that IDSL provides always-on connections and transmits data via a data network rather than the carrier's voice network.

The public switched telephone network (PSTN) is the aggregate of the world's telephone networks that are operated by national, regional, or local telephony operators. It provides infrastructure and services for public telephony. The PSTN consists of telephone lines, fiber-optic cables, microwave transmission links, cellular networks, communications satellites, and undersea telephone cables interconnected by switching centers, such as central offices, network tandems, and international gateways, which allow telephone users to communicate with each other.

In telephony, pair gain is the transmission of multiple plain old telephone service (POTS) channels over the twisted pair local loop traditionally used for a single subscriber line in telephone systems. Pair gain has the effect of creating additional subscriber lines. This is typically used as an expedient way to solve subscriber line shortages at a location by using existing wiring, instead of installing new wires from the central office to the customer premises. The term was invented in the middle 20th century by analogy with earlier use of gain to extend telephone local loops far from the telephone exchange.

<span class="mw-page-title-main">Telephone line</span> Single-user circuit on a telephone communication system

A telephone line or telephone circuit is a single-user circuit on a telephone communication system. It is designed to reproduce speech of a quality that is understandable. It is the physical wire or other signaling medium connecting the user's telephone apparatus to the telecommunications network, and usually also implies a single telephone number for billing purposes reserved for that user. Telephone lines are used to deliver landline telephone service and digital subscriber line (DSL) phone cable service to the premises. Telephone overhead lines are connected to the public switched telephone network. The voltage at a subscriber's network interface is typically 48 V between the ring and tip wires, with tip near ground and ring at –48 V.

System X is the digital switching system installed in almost all telephone exchanges throughout the United Kingdom, from 1980 onwards.

<span class="mw-page-title-main">DMS-100</span> Nortel telecom switch

The DMS-100 is a member of the Digital Multiplex System (DMS) product line of telephone exchange switches manufactured by Northern Telecom. Designed during the 1970s and released in 1979, it can control 100,000 telephone lines.

In telecommunication, a two-wire circuit is characterized by supporting transmission in two directions simultaneously, as opposed to four-wire circuits, which have separate pairs for transmit and receive. The subscriber local loop from the telco central office are almost all two wire for analog baseband voice calls, and converted to four-wire at the line card back when telephone switching was performed on baseband audio. Today the audio is digitized and processed completely in the digital domain upstream from the local loop.

<span class="mw-page-title-main">DSL modem</span> Type of computer network modem; network equipment

A digital subscriber line (DSL) modem is a device used to connect a computer or router to a telephone line which provides the digital subscriber line (DSL) service for connection to the Internet, which is often called DSL broadband. The modem connects to a single computer or router, through an Ethernet port, USB port, or is installed in a computer PCI slot.

<span class="mw-page-title-main">British telephone socket</span> Type of telephone socket design

British telephone sockets were introduced in their current plug and socket form on 19 November 1981 by British Telecom to allow subscribers to connect their own telephones. The connectors are specified in British Standard BS 6312. Electrical characteristics of the telephone interface are specified by individual network operators, e.g. in British Telecom's SIN 351. Electrical characteristics required of British telephones used to be specified in BS 6305.

BT Highway was a UK retail ISDN2e service from British Telecom which was announced in November 1997 and withdrawn in February 2007. In the domestic market, it was sold as BT Home Highway and for small businesses, BT Business Highway. These names were used simply to differentiate billing schemes; the hardware for both services used the name BT Highway. Unlike regular ISDN2e service where only a digital S interface is provided BT Highway provided both digital and analogue connections simplifying migration from regular POTS service.

<span class="mw-page-title-main">ADSL</span> DSL service where downstream bandwidth exceeds upstream bandwidth

Asymmetric digital subscriber line (ADSL) is a type of digital subscriber line (DSL) technology, a data communications technology that enables faster data transmission over copper telephone lines than a conventional voiceband modem can provide. ADSL differs from the less common symmetric digital subscriber line (SDSL). In ADSL, bandwidth and bit rate are said to be asymmetric, meaning greater toward the customer premises (downstream) than the reverse (upstream). Providers usually market ADSL as an Internet access service primarily for downloading content from the Internet, but not for serving content accessed by others.

<span class="mw-page-title-main">Telephone exchange</span> Interconnects telephones for calls

A telephone exchange, also known as a telephone switch or central office, is a crucial component in the public switched telephone network (PSTN) or large enterprise telecommunications systems. It facilitates the interconnection of telephone subscriber lines or digital system virtual circuits, enabling telephone calls between subscribers.