Diglycidyl aniline

Last updated
Diglycidyl aniline
Diglycidylaniline.svg
Names
IUPAC name
N,N-bis(oxiran-2-ylmethyl)aniline
Other names
Diglycidylaniline; Bis(2,3-epoxypropyl)aniline; Bis(epoxypropyl)phenylamine; Diglycidyl aniline; N,N-Bis(2,3-epoxypropyl)aniline; N,N-Di(2,3-epoxypropyl)aniline; N,N-Diglycidylaniline; N-(Oxiranylmethyl)-N-phenyloxiranemethanamine; N-N-Diglycidylphenylamine; N-(2-oxiranylmethyl)-N-phenyl-2-oxiranemethanamine; N,N-bis(2,3-epoxypropyl)-aniline; N-(oxiranylmethyl)-N-phenyl-oxiranemethanamine
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.016.599 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 218-259-5
PubChem CID
UNII
  • InChI=1S/C12H15NO2/c1-2-4-10(5-3-1)13(6-11-8-14-11)7-12-9-15-12/h1-5,11-12H,6-9H2
    Key: JAYXSROKFZAHRQ-UHFFFAOYSA-N
  • C1C(O1)CN(CC2CO2)C3=CC=CC=C3
Properties
C12H15NO2
Molar mass 205.255 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Diglycidyl aniline is an aromatic organic chemical in the glycidyl compound family. [1] It is used to reduce the viscosity of epoxy resin systems. [2] It has the empirical formula C12H15NO2 and the IUPAC name is N,N-bis(oxiran-2-ylmethyl)aniline. The CAS number is 2095-06-9. [3] [4] It is REACH registered in Europe with the EC number 218-259-5. [5] A key use is in the viscosity reduction of epoxy resin systems functioning as a reactive diluent. [6] [7]

Contents

Alternative names

Manufacture and synthesis

Many glycidyl ethers are manufactured by addition of epichlorohydrin to a species with the aid of a Lewis acid as catalyst to form a halohydrin. This process is followed by washing with sodium hydroxide in a dehydrochlorination reaction. [10] This diglycidyl compound being basic and nitrogen based, does not need this type of catalyst. [11] [12] One of the quality control tests would involve measuring the Epoxy value by determination of the epoxy equivalent weight in addition to viscosity.

Uses

The use of the diluent in epoxy systems affects the mechanical properties and microstructure of epoxy resins. [13] [14] [15] [16] [17] The kinetics of cure of this Diglycidyl amine with epoxy resin networks have been studied. [18] It has also been used to synthesize other materials including ion-exchange resins. [19] [20] [21]

Toxicity

The toxicity profile has been studied and published. [22]

Related Research Articles

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Bisphenol A diglycidyl ether</span> Chemical compound

Bisphenol A diglycidyl ether is an organic compound and is a liquid epoxy resin. The compound is a colorless viscous liquid. It is a key component of many epoxy resin formulations. Addition of further Bisphenol A and a catalyst and heat can produce Bisphenol A glycidyl ether epoxy resins of higher molecular weight that are solid.

n-Butyl glycidyl ether is an industrial chemical used in adhesives, sealants, and as a paint or coating additive. It is principally used to reduce the viscosity of epoxy resin systems.

4,4'-Diaminodicyclohexylmethane is the name for organic compounds with the formula CH2(C6H10NH2)2. It is classified as a diamine. In the epoxy industry it is often referred to as PACM, short for para-diamino­dicyclohexyl­methane. It is used as a curing agent for epoxy resins It finds particular use in epoxy flooring. Another use is to produce diisocyanates, which are precursors to polyurethanes. The mixture is a colorless solid, but typical samples are yellowish and oily. The compound is produced as a mixture of three isomers by the hydrogenation of methylenedianiline. These isomers are, in decreasing order of their yield from the hydrogenation, trans-trans, cis-trans, and a small amount of cis-cis.

2-Ethylhexyl glycidyl ether is a liquid organic molecule with formula C11H22O2 an industrial chemical used to reduce the viscosity of epoxy resins. These are then used in adhesives, sealants, and paints or coatings. It has the CAS Registry Number of 2461-15-6. It has the IUPAC name of 2-(2-ethylhexoxymethyl)oxirane. It also finds use in other polymer based applications.

<span class="mw-page-title-main">Diethyl toluene diamine</span> Chemical compound

Diethyl toluene diamine (DETDA) is a liquid aromatic organic molecule with formula C11H18N2. It is chemically an aromatic diamine and has the CAS Registry number of 68479-98-1. It has more than one isomer and the mixture of the two main isomers is given a different CAS number of 75389-89-8. It is often marketed as a less toxic version of 4,4'-methylenedianiline (MDA). It is also used to replace the more toxic 4,4'-methylenebis(2-chloroaniline) (MOCA). The toxicology is reasonably well understood.

<i>o</i>-Cresyl glycidyl ether Chemical compound

o-Cresyl glycidyl ether (ortho-cresyl glycidyl ether, o-CGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether. It has the formula C10H12O2 and the CAS Registry Number 2210-79-9. It is one of a number of glycidyl ethers available commercially that are used to reduce the viscosity of epoxy resins. These are then further used in coatings, sealants, adhesives and elastomers.

Neopentyl glycol diglycidyl ether (NPGDGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has the formula C11H20O4 and the CAS registry number of 17557-23-2. It has two oxirane groups per molecule. Its principle use is in modifying epoxy resins.

1,4-Butanediol diglycidyl ether (B14DODGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction.

1,6-Hexanediol diglycidyl ether is an organic chemical in the glycidyl ether family. It is an aliphatic compound that is a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction whilst flexibilizing. It is REACH registered.

1,4-Cyclohexanedimethanol diglycidyl ether is an organic chemical in the glycidyl ether family. Its formula is C14H24O4 and the IUPAC name is 2-[[4-(oxiran-2-ylmethoxymethyl)cyclohexyl]methoxymethyl]oxirane. It has the CAS number of 14228-73-0 and is REACH registered in Europe. An industrial chemical, a key use is in the reduction of the viscosity of epoxy resin systems functioning as a reactive diluent.

<span class="mw-page-title-main">C12–C14 alcohol glycidyl ether</span> Chemical compound

C12-C14 alcohol glycidyl ether (AGE) is an organic chemical in the glycidyl ether family. It is a mixture of mainly 12 and 14 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 68609-97-2 but the IUPAC name is more complex as it is a mixture and is 2-(dodecoxymethyl)oxirane;2-(tetradecoxymethyl)oxirane;2-(tridecoxymethyl)oxirane. Other names include dodecyl and tetradecyl glycidyl ethers and alkyl (C12-C14) glycidyl ether.

<span class="mw-page-title-main">Trimethylolpropane triglycidyl ether</span> Chemical compound

Trimethylolpropane triglycidyl ether (TMPTGE) is an organic chemical in the glycidyl ether family. It has the formula C15H26O6 and the IUPAC name is 2-[2,2-bis(oxiran-2-ylmethoxymethyl)butoxymethyl]oxirane, and the CAS number 3454-29-3. It also has another CAS number of 30499-70-8 A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Castor oil glycidyl ether</span> Chemical compound

Castor oil glycidyl ether is a liquid organic chemical in the glycidyl ether family. It is sometimes called castor oil triglycidyl ether. It has the theoretical formula C66H116O12 and the CAS number 14228-73-0. The IUPAC name is 2,3-bis[12-(oxiran-2-ylmethoxy)octadec-9-enoyloxy]propyl 12-(oxiran-2-ylmethoxy)octadec-9-enoate. A key use is acting as a modifier for epoxy resins as a reactive diluent that adds flexibility and improved mechanical properties.

<span class="mw-page-title-main">C12–C13 alcohol glycidyl ether</span> Chemical compound

C12-C13 alcohol glycidyl ether is a mixture of organic chemicals in the glycidyl ether family. It is a mixture of mainly 12 and 13 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 120547-52-6.

<span class="mw-page-title-main">Trimethylolethane triglycidyl ether</span> Chemical compound

Trimethylolethane triglycidyl ether (TMETGE) is an organic chemical in the glycidyl ether family. It has the formula C14H24O6 and the IUPAC name is 2-({2-methyl-3-[(oxiran-2-yl)methoxy]-2-{[(oxiran-2-yl)methoxy]methyl}propoxy}methyl)oxirane. The CAS number is 68460-21-9. A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Poly(propylene glycol) diglycidyl ether</span> Chemical compound

Poly(propylene glycol) diglycidyl ether (PPGDGE) is an organic chemical in the glycidyl ether family. There are a number of variations depending on the starting molecular weight of the polypropylene glycol. They have the formula (C3H6O)n.C6H10O3 and the IUPAC name is Poly[oxy(methyl-1,2-ethanediyl)],a-(2-oxiranylmethyl)-w-(2-oxiranylmethoxy)- A key use is as a modifier for epoxy resins as a reactive diluent and flexibilizer. It is REACH registered.

<span class="mw-page-title-main">Diethylene glycol diglycidyl ether</span> Chemical compound

Diethylene glycol diglycidyl ether (DEGDGE) is an organic chemical in the glycidyl ether family with the formula C10H18O5.. The oxirane functionality makes it useful as a reactive diluent for epoxy resin viscosity reduction.

<span class="mw-page-title-main">Diglycidyl resorcinol ether</span> Chemical compound

Diglycidyl resorcinol ether, also called Resorcinol diglycidyl ether (RDGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether.

<span class="mw-page-title-main">Phenyl glycidyl ether</span> Chemical compound

Phenyl glycidyl ether, is a liquid aromatic organic chemical in the glycidyl ether class of compounds. It has the formula C9H10O2. It has the CAS Registry Number 122-60-1 and the IUPAC name of 2-(phenoxymethyl)oxirane. A key use is in the viscosity reduction of epoxy resin systems. It is REACH registered and on EINECS under the name 2,3-epoxypropyl phenyl ether.

References

  1. "diglycidylaniline - MeSH - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-08-04.
  2. Dušek, Karel (1989), Lemstra, P. J.; Kleintjens, L. A. (eds.), "Curing of Epoxy Matrices", Integration of Fundamental Polymer Science and Technology—3, Dordrecht: Springer Netherlands, pp. 265–273, doi:10.1007/978-94-009-1115-4_30, ISBN   978-94-009-1115-4 , retrieved 2022-08-04
  3. PubChem. "Diglycidylaniline". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-08-04.
  4. PubChem. "2095-06-9". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-08-04.
  5. "Substance Information - ECHA". echa.europa.eu. Archived from the original on 2022-04-11. Retrieved 2022-04-11.
  6. EP 2621994,Hefner, Robert E.,"Epoxy resin compositions",published 2013-08-07, assigned to Dow Global Technologies LLC
  7. Jagtap, Ameya Rajendra; More, Aarti (2022-08-01). "Developments in reactive diluents: a review". Polymer Bulletin. 79 (8): 5667–5708. doi:10.1007/s00289-021-03808-5. ISSN   1436-2449. S2CID   235678040.
  8. PubChem. "N,N-bis(oxiran-2-ylmethyl)aniline". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-08-04.
  9. PubChem. "2095-06-9". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-08-04.
  10. Crivello, James V. (2006). "Design and synthesis of multifunctional glycidyl ethers that undergo frontal polymerization". Journal of Polymer Science Part A: Polymer Chemistry. 44 (21): 6435–6448. Bibcode:2006JPoSA..44.6435C. doi:10.1002/pola.21761. ISSN   0887-624X.
  11. Panda, Dr H (2019). Epoxy Resins Technology Handbook (Manufacturing Process, Synthesis, Epoxy Resin Adhesives and Epoxy Coatings (2nd ed.). Asia Pacific Business Press Inc. p. 38. ISBN   978-8178331829.
  12. Jung, Woo-Hyuk; Ha, Eun-Ju; Chung, Il doo; Lee, Jang-Oo (2008-08-01). "Synthesis of aniline-based azopolymers for surface relief grating". Macromolecular Research. 16 (6): 532–538. doi:10.1007/BF03218555. ISSN   2092-7673. S2CID   94372490.
  13. Pastarnokienė, Liepa; Jonikaitė-Švėgždienė, Jūratė; Lapinskaitė, Neringa; Kulbokaitė, Rūta; Bočkuvienė, Alma; Kochanė, Tatjana; Makuška, Ričardas (2023-07-01). "The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coatings". Journal of Coatings Technology and Research. 20 (4): 1207–1221. doi:10.1007/s11998-022-00737-4. ISSN   1935-3804. S2CID   256749849.
  14. Matějka, Libor; Dušek, Karel; Dobáš, Ivan (1985-10-01). "Curing of epoxy resins with amines". Polymer Bulletin. 14 (3): 309–315. doi:10.1007/BF00254954. ISSN   1436-2449. S2CID   92434408.
  15. Khalina, Morteza; Beheshty, Mohammad Hosain; Salimi, Ali (2019-08-01). "The effect of reactive diluent on mechanical properties and microstructure of epoxy resins". Polymer Bulletin. 76 (8): 3905–3927. doi:10.1007/s00289-018-2577-6. ISSN   1436-2449. S2CID   105389177.
  16. Roşu, D; Caşcaval, C. N; Mustątǎ, F; Ciobanu, C (2002-02-07). "Cure kinetics of epoxy resins studied by non-isothermal DSC data". Thermochimica Acta. 383 (1): 119–127. doi:10.1016/S0040-6031(01)00672-4. ISSN   0040-6031.
  17. Klee, Joachim; Flammersheim, Hans Jurgen (2002). "Linear Addition Polymers and Cyclic Oligomers of N,N-Diglycidyl Aniline and Amines -Uncrosslinked Epoxide Amine Addition Polymers". Macromolecular Chemistry and Physics (203 ed.). 203: 100–108. doi:10.1002/1521-3935(20020101)203:1<100::AID-MACP100>3.0.CO;2-J.
  18. John, N. A. St; George, G. A. (1994-01-01). "Diglycidyl amine — epoxy resin networks: Kinetics and mechanisms of cure". Progress in Polymer Science. 19 (5): 755–795. doi:10.1016/0079-6700(94)90032-9. ISSN   0079-6700.
  19. Ergozhin, E. E.; Begenova, B. E.; Chalov, T. K. (2007-03-01). "Synthesis and study of physicochemical, acid-base, and complexing properties of ion exchangers based on glycidyl derivatives of aromatic compounds and polyamines". Russian Journal of Applied Chemistry. 80 (3): 472–476. doi:10.1134/S1070427207030238. ISSN   1608-3296. S2CID   92895375.
  20. Johncock, P.; Cunliffe, A. V. (1992-01-01). "Structural features in epoxy networks from N,N-diglycidyl epoxies and amines: 2. Ether ring formation and polymer structure in the reactions of N,N-diglycidylaniline with aniline and substituted anilines". Polymer. 33 (11): 2392–2401. doi:10.1016/0032-3861(92)90533-3. ISSN   0032-3861.
  21. John, N. A. St; George, G. A. (1994-01-01). "Diglycidyl amine — epoxy resin networks: Kinetics and mechanisms of cure". Progress in Polymer Science. 19 (5): 755–795. doi:10.1016/0079-6700(94)90032-9. ISSN   0079-6700.
  22. Seiler, J.P. (March 1984). "The mutagenicity of mono- and di-functional aromatic glycidyl compounds". Mutation Research/Genetic Toxicology. 135 (3): 159–167. doi:10.1016/0165-1218(84)90116-2. PMID   6369127.

Further reading

External websites