Dihydropteroate

Last updated
Dihydropteroate
Dihydropteroic acid.svg
Names
IUPAC name
4-{[(2-amino-4-oxo-1,4,7,8-tetrahydropteridin-6-yl)methyl]amino}benzoic acid
Identifiers
3D model (JSmol)
1226443
ChEBI
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C14H14N6O3/c15-14-19-11-10(12(21)20-14)18-9(6-17-11)5-16-8-3-1-7(2-4-8)13(22)23/h1-4,16H,5-6H2,(H,22,23)(H4,15,17,19,20,21) Yes check.svgY
    Key: WBFYVDCHGVNRBH-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C14H14N6O3/c15-14-19-11-10(12(21)20-14)18-9(6-17-11)5-16-8-3-1-7(2-4-8)13(22)23/h1-4,16H,5-6H2,(H,22,23)(H4,15,17,19,20,21)
    Key: WBFYVDCHGVNRBH-UHFFFAOYAH
  • O=C(O)c1ccc(cc1)NCC/2=N/C=3C(=O)\N=C(/NC=3NC\2)N
  • C1C(=NC2=C(N1)NC(=NC2=O)N)CNC3=CC=C(C=C3)C(=O)O
Properties
C14H14N6O3
Molar mass 314.3 g/mol
Hazards
GHS labelling: [1]
GHS-pictogram-skull.svg
Danger
H300
P264, P301+P310
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Dihydropteroate is an important intermediate in folate biosynthesis. It is a pterin created from para-aminobenzoic acid (PABA) by the enzyme dihydropteroate synthase. [2]

Tetrahydrofolate synthesis pathway THFsynthesispathway.png
Tetrahydrofolate synthesis pathway

Bacteriostatic agents such as sulfonamides target dihydropteroate synthetase. The effect of dihydropteroate synthetase inhibition is comparable to that of dihydrofolate reductase inhibition by trimethoprim, another bacteriostatic agent. Combinations of these two drug types, such as the combination trimethoprim/sulfamethoxazole (TMP-SMX]), are commonly used to treat recurrent urinary tract, Shigella , Salmonella , and Pneumocystis jivoreci infections.

See also

Related Research Articles

<span class="mw-page-title-main">Trimethoprim</span> Antibiotic

Trimethoprim (TMP) is an antibiotic used mainly in the treatment of bladder infections. Other uses include for middle ear infections and travelers' diarrhea. With sulfamethoxazole or dapsone it may be used for Pneumocystis pneumonia in people with HIV/AIDS. It is taken orally.

<span class="mw-page-title-main">Bacteriostatic agent</span> Agent that stops bacteria from reproducing

A bacteriostatic agent or bacteriostat, abbreviated Bstatic, is a biological or chemical agent that stops bacteria from reproducing, while not necessarily killing them otherwise. Depending on their application, bacteriostatic antibiotics, disinfectants, antiseptics and preservatives can be distinguished. When bacteriostatic antimicrobials are used, the duration of therapy must be sufficient to allow host defense mechanisms to eradicate the bacteria. Upon removal of the bacteriostat, the bacteria usually start to grow rapidly. This is in contrast to bactericides, which kill bacteria.

<span class="mw-page-title-main">Cyclooxygenase</span> Class of enzymes

Cyclooxygenase (COX), officially known as prostaglandin-endoperoxide synthase (PTGS), is an enzyme that is responsible for biosynthesis of prostanoids, including thromboxane and prostaglandins such as prostacyclin, from arachidonic acid. A member of the animal-type heme peroxidase family, it is also known as prostaglandin G/H synthase. The specific reaction catalyzed is the conversion from arachidonic acid to prostaglandin H2 via a short-living prostaglandin G2 intermediate.

<span class="mw-page-title-main">Mupirocin</span> Chemical compound

Mupirocin, sold under the brand name Bactroban among others, is a topical antibiotic useful against superficial skin infections such as impetigo or folliculitis. It may also be used to get rid of methicillin-resistant S. aureus (MRSA) when present in the nose without symptoms. Due to concerns of developing resistance, use for greater than ten days is not recommended. It is used as a cream or ointment applied to the skin.

<span class="mw-page-title-main">Folinic acid</span> Derivative of folic acid used in cancer treatment

Folinic acid, also known as leucovorin, is a medication used to decrease the toxic effects of methotrexate and pyrimethamine. It is also used in combination with 5-fluorouracil to treat colorectal cancer and pancreatic cancer, may be used to treat folate deficiency that results in anemia, and methanol poisoning. It is taken by mouth, injection into a muscle, or injection into a vein.

<span class="mw-page-title-main">Sulfamethoxazole</span> Chemical compound

Sulfamethoxazole is an antibiotic. It is used for bacterial infections such as urinary tract infections, bronchitis, and prostatitis and is effective against both gram negative and positive bacteria such as Escherichia coli and Listeria monocytogenes.

<span class="mw-page-title-main">Pterin</span> Chemical compound

Pterin is a heterocyclic compound composed of a pteridine ring system, with a "keto group" and an amino group on positions 4 and 2 respectively. It is structurally related to the parent bicyclic heterocycle called pteridine. Pterins, as a group, are compounds related to pterin with additional substituents. Pterin itself is of no biological significance.

<span class="mw-page-title-main">Clavulanic acid</span> Molecule used to overcome antibiotic resistance in bacteria

Clavulanic acid is a β-lactam drug that functions as a mechanism-based β-lactamase inhibitor. While not effective by itself as an antibiotic, when combined with penicillin-group antibiotics, it can overcome antibiotic resistance in bacteria that secrete β-lactamase, which otherwise inactivates most penicillins.

<span class="mw-page-title-main">CTP synthetase</span> Enzyme

CTP synthase is an enzyme involved in pyrimidine biosynthesis that interconverts UTP and CTP.

<span class="mw-page-title-main">Long-chain-fatty-acid—CoA ligase</span> Class of enzymes

The long chain fatty acyl-CoA ligase is an enzyme of the ligase family that activates the oxidation of complex fatty acids. Long chain fatty acyl-CoA synthetase catalyzes the formation of fatty acyl-CoA by a two-step process proceeding through an adenylated intermediate. The enzyme catalyzes the following reaction,

<span class="mw-page-title-main">Tetrahydrofolic acid</span> Chemical compound

Tetrahydrofolic acid (THFA), or tetrahydrofolate, is a folic acid derivative.

<span class="mw-page-title-main">Antifolate</span> Class of antimetabolite medications

Antifolates are a class of antimetabolite medications that antagonise (that is, block) the actions of folic acid (vitamin B9). Folic acid's primary function in the body is as a cofactor to various methyltransferases involved in serine, methionine, thymidine and purine biosynthesis. Consequently, antifolates inhibit cell division, DNA/RNA synthesis and repair and protein synthesis. Some such as proguanil, pyrimethamine and trimethoprim selectively inhibit folate's actions in microbial organisms such as bacteria, protozoa and fungi. The majority of antifolates work by inhibiting dihydrofolate reductase (DHFR).

<span class="mw-page-title-main">Dihydrofolate synthase</span> Class of enzymes

In enzymology, a dihydrofolate synthase is an enzyme that catalyzes the chemical reaction

In enzymology, an ubiquitin-calmodulin ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a 2-isopropylmalate synthase (EC 2.3.3.13) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Dihydropteroate synthase inhibitor</span> A drug that inhibits the action of dihydropteroate synthase

Dihydropteroate synthase inhibitors are drugs that inhibit the action of dihydropteroate synthase. They include sulfonamides, dapsone, and para-aminosalicylic acid.

<span class="mw-page-title-main">Morin (flavonol)</span> Chemical compound

Morin is a yellow chemical compound that can be isolated from Maclura pomifera (Osage orange), Maclura tinctoria (old fustic), and from leaves of Psidium guajava (common guava). In a preclinical in vitro study, morin was found to be a weak inhibitor of fatty acid synthase with an IC50 of 2.33 μM. Morin was also found to inhibit amyloid formation by islet amyloid polypeptide (or amylin) and disaggregate amyloid fibers.

<span class="mw-page-title-main">DAHP synthase</span> Class of enzymes

3-Deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase is the first enzyme in a series of metabolic reactions known as the shikimate pathway, which is responsible for the biosynthesis of the amino acids phenylalanine, tyrosine, and tryptophan. Since it is the first enzyme in the shikimate pathway, it controls the amount of carbon entering the pathway. Enzyme inhibition is the primary method of regulating the amount of carbon entering the pathway. Forms of this enzyme differ between organisms, but can be considered DAHP synthase based upon the reaction that is catalyzed by this enzyme.

<span class="mw-page-title-main">EPSP synthase</span> Enzyme produced by plants and microorganisms

5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is an enzyme produced by plants and microorganisms. EPSPS catalyzes the chemical reaction:

<span class="mw-page-title-main">Furegrelate</span> Chemical compound

Furegrelate, also known as 5-(3-pyridinylmethyl)benzofurancarboxylic acid, is a chemical compound with thromboxane enzyme inhibiting properties that was originally developed by Pharmacia Corporation as a drug to treat arrhythmias, ischaemic heart disorders, and thrombosis but was discontinued. It is commercially available in the form furegrelate sodium salt.

References

  1. GHS: GESTIS 492946
  2. Hevener, Kirk E; Yun, Mi-Kyung; Qi, Jianjun; Kerr, Iain D; Babaoglu, Kerim; Hurdle, Julian G; Balakrishna, Kanya; White, Stephen W; Lee, Richard E (2010). "Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase". Journal of Medicinal Chemistry. 53 (1): 166–177. doi:10.1021/jm900861d. PMC   2804029 . PMID   19899766.