Distance of closest approach

Last updated

The distance of closest approach of two objects is the distance between their centers when they are externally tangent. The objects may be geometric shapes or physical particles with well-defined boundaries. The distance of closest approach is sometimes referred to as the contact distance.

Contents

For the simplest objects, spheres, the distance of closest approach is simply the sum of their radii. For non-spherical objects, the distance of closest approach is a function of the orientation of the objects, and its calculation can be difficult. The maximum packing density of hard particles, an important problem of ongoing interest, [1] depends on their distance of closest approach.

The interactions of particles typically depend on their separation, and the distance of closest approach plays an important role in determining the behavior of condensed matter systems.

Excluded volume

The excluded volume of particles (the volume excluded to the centers of other particles due to the presence of one) is a key parameter in such descriptions,; [2] [3] the distance of closest approach is required to calculate the excluded volume. The excluded volume for identical spheres is just four times the volume of one sphere. For other anisotropic objects, the excluded volume depends on orientation, and its calculation can be surprising difficult. [4] The simplest shapes after spheres are ellipses and ellipsoids; these have received considerable attention, [5] yet their excluded volume is not known. Vieillard Baron was able to provide an overlap criterion for two ellipses. His results were useful for computer simulations of hard particle systems and for packing problems using Monte Carlo simulations.

Two externally tangent ellipses Ellipses.png
Two externally tangent ellipses

The one anisotropic shape whose excluded volume can be expressed analytically is the spherocylinder; the solution of this problem is a classic work by Onsager. [6] The problem was tackled by considering the distance between two line segments, which are the center lines of the capped cylinders. Results for other shapes are not readily available. The orientation dependence of the distance of closest approach has surprising consequences. Systems of hard particles, whose interactions are only entropic, can become ordered. Hard spherocylinders form not only orientationally ordered nematic, but also positionally ordered smectic phases. [7] Here, the system gives up some (orientational and even positional) disorder to gain disorder and entropy elsewhere.

Case of two ellipses

Vieillard Baron first investigated this problem, and although he did not obtain a result for the distance of closest approaches, he derived the overlap criterion for two ellipses. His final results were useful for the study of the phase behavior of hard particles and for the packing problem using Monte Carlo simulations. Although overlap criteria have been developed, [8] [9] analytic solutions for the distance of closest approach and the location of the point of contact have only recently become available. [10] [11] The details of the calculations are provided in Ref. [12] The Fortran 90 subroutine is provided in Ref. [13]

The procedure consists of three steps:

  1. Transformation of the two tangent ellipses and , whose centers are joined by the vector , into a circle and an ellipse , whose centers are joined by the vector . The circle and the ellipse remain tangent after the transformation.
  2. Determination of the distance of closest approach of and analytically. It requires the appropriate solution of a quartic equation. The normal is calculated.
  3. Determination of the distance of closest approach and the location of the point of contact of and by the inverse transformations of the vectors and .

Input:

Output:

Case of two ellipsoids

Consider two ellipsoids, each with a given shape and orientation, whose centers are on a line with given direction. We wish to determine the distance between centers when the ellipsoids are in point contact externally. This distance of closest approach is a function of the shapes of the ellipsoids and their orientation. There is no analytic solution for this problem, since solving for the distance requires the solution of a sixth order polynomial equation. Here an algorithm is developed to determine this distance, based on the analytic results for the distance of closest approach of ellipses in 2D, which can be implemented numerically. Details are given in publications. [14] [15] Subroutines are provided in two formats: Fortran90 [16] and C. [17]

The algorithm consists of three steps.

  1. Constructing a plane containing the line joining the centers of the two ellipsoids, and finding the equations of the ellipses formed by the intersection of this plane and the ellipsoids.
  2. Determining the distance of closest approach of the ellipses; that is the distance between the centers of the ellipses when they are in point contact externally.
  3. Rotating the plane until the distance of closest approach of the ellipses is a maximum. The distance of closest approach of the ellipsoids is this maximum distance.

See also

Related Research Articles

<span class="mw-page-title-main">Diameter</span> Straight line segment that passes through the centre of a circle

In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid for the diameter of a sphere.

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Sphere</span> Set of points equidistant from a center

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

<span class="mw-page-title-main">Perpendicular</span> Relationship between two lines that meet at a right angle (90 degrees)

In geometry, two geometric objects are perpendicular if their intersection forms right angles at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines, between a line and a plane, and between two planes.

<span class="mw-page-title-main">Geodesic</span> Straight path on a curved surface or a Riemannian manifold

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Packing problems</span> Problems which attempt to find the most efficient way to pack objects into containers

Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap.

<span class="mw-page-title-main">Figure of the Earth</span> Size and shape used to model the Earth for geodesy

In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is satisfactory for geography, astronomy and many other purposes. Several models with greater accuracy have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.

<span class="mw-page-title-main">Eccentricity (mathematics)</span> Characteristic of conic sections

In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape.

<span class="mw-page-title-main">Problem of Apollonius</span> Construct circles that are tangent to three given circles in a plane

In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga posed and solved this famous problem in his work Ἐπαφαί ; this work has been lost, but a 4th-century AD report of his results by Pappus of Alexandria has survived. Three given circles generically have eight different circles that are tangent to them (Figure 2), a pair of solutions for each way to divide the three given circles in two subsets.

<span class="mw-page-title-main">Tissot's indicatrix</span> Characterization of distortion in map protections

In cartography, a Tissot's indicatrix is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

The concept of excluded volume was introduced by Werner Kuhn in 1934 and applied to polymer molecules shortly thereafter by Paul Flory. Excluded volume gives rise to depletion forces.

<span class="mw-page-title-main">Tetrahedron packing</span>

In geometry, tetrahedron packing is the problem of arranging identical regular tetrahedra throughout three-dimensional space so as to fill the maximum possible fraction of space.

<span class="mw-page-title-main">Line segment</span> Part of a line that is bounded by two distinct end points; line with two endpoints

In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. It is a special case of an arc, with zero curvature. The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using an overline (vinculum) above the symbols for the two endpoints, such as in AB.

Lamé's stress ellipsoid is an alternative to Mohr's circle for the graphical representation of the stress state at a point. The surface of the ellipsoid represents the locus of the endpoints of all stress vectors acting on all planes passing through a given point in the continuum body. In other words, the endpoints of all stress vectors at a given point in the continuum body lie on the stress ellipsoid surface, i.e., the radius-vector from the center of the ellipsoid, located at the material point in consideration, to a point on the surface of the ellipsoid is equal to the stress vector on some plane passing through the point. In two dimensions, the surface is represented by an ellipse.

<span class="mw-page-title-main">Sharon Glotzer</span> American physicist

Sharon C. Glotzer is an American scientist and "digital alchemist", the Anthony C. Lembke Department Chair of Chemical Engineering, the John Werner Cahn Distinguished University Professor of Engineering and the Stuart W. Churchill Collegiate Professor of Chemical Engineering at the University of Michigan, where she is also professor of materials science and engineering, professor of physics, professor of macromolecular science and engineering, and professor of applied physics. She is recognized for her contributions to the fields of soft matter and computational science, most notably on problems in assembly science and engineering, nanoscience, and the glass transition, for which the elucidation of the nature of dynamical heterogeneity in glassy liquids is of particular significance. She is a member of the National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences.

A depletion force is an effective attractive force that arises between large colloidal particles that are suspended in a dilute solution of depletants, which are smaller solutes that are preferentially excluded from the vicinity of the large particles. One of the earliest reports of depletion forces that lead to particle coagulation is that of Bondy, who observed the separation or "creaming" of rubber latex upon addition of polymer depletant molecules to solution. More generally, depletants can include polymers, micelles, osmolytes, ink, mud, or paint dispersed in a continuous phase.

<span class="mw-page-title-main">Earth section paths</span> Plane curved by the intersection of an earth ellipsoid and a plane

Earth section paths are plane curves defined by the intersection of an earth ellipsoid and a plane. Common examples include the great ellipse and normal sections. Earth section paths are useful as approximate solutions for geodetic problems, the direct and inverse calculation of geographic distances. The rigorous solution of geodetic problems involves skew curves known as geodesics.

<span class="mw-page-title-main">Sphere packing in a cylinder</span> Three-dimensional packing problem

Sphere packing in a cylinder is a three-dimensional packing problem with the objective of packing a given number of identical spheres inside a cylinder of specified diameter and length. For cylinders with diameters on the same order of magnitude as the spheres, such packings result in what are called columnar structures.

References

  1. Torquato, S.; Jiao, Y. (2009). "Dense packings of the Platonic and Archimedean solids". Nature. Springer Science and Business Media LLC. 460 (7257): 876–879. arXiv: 0908.4107 . doi:10.1038/nature08239. ISSN   0028-0836. PMID   19675649. S2CID   52819935.
  2. T.L. Hill, An Introduction to Statistical Thermodynamics (Addison Wesley, London, 1960)
  3. T.A. Witten, and P.A. Pincus, Structured Fluids (Oxford University Press, Oxford, 2004)
  4. Forces, Growth and Form in Soft Condensed Matter: At the Interface between Physics and Biology, ed. A.T. Skjeltrop and A.V. Belushkin, (NATO Science Series II: Mathematics, Physics and Chemistry, 2009),
  5. Donev, Aleksandar; Stillinger, Frank H.; Chaikin, P. M.; Torquato, Salvatore (2004-06-23). "Unusually Dense Crystal Packings of Ellipsoids". Physical Review Letters. American Physical Society (APS). 92 (25): 255506. arXiv: cond-mat/0403286 . doi:10.1103/physrevlett.92.255506. ISSN   0031-9007. PMID   15245027. S2CID   7982407.
  6. Onsager, Lars (1949). "The Effects of Shape on the Interaction of Colloidal Particles". Annals of the New York Academy of Sciences. Wiley. 51 (4): 627–659. doi:10.1111/j.1749-6632.1949.tb27296.x. ISSN   0077-8923. S2CID   84562683.
  7. Frenkel, Daan. (1987-09-10). "Onsager's spherocylinders revisited". The Journal of Physical Chemistry. American Chemical Society (ACS). 91 (19): 4912–4916. doi:10.1021/j100303a008. hdl: 1874/8823 . ISSN   0022-3654.
  8. Vieillard‐Baron, Jacques (1972-05-15). "Phase Transitions of the Classical Hard‐Ellipse System". The Journal of Chemical Physics. AIP Publishing. 56 (10): 4729–4744. doi:10.1063/1.1676946. ISSN   0021-9606.
  9. Perram, John W.; Wertheim, M.S. (1985). "Statistical mechanics of hard ellipsoids. I. Overlap algorithm and the contact function". Journal of Computational Physics. Elsevier BV. 58 (3): 409–416. doi:10.1016/0021-9991(85)90171-8. ISSN   0021-9991.
  10. X. Zheng and P. Palffy-Muhoray, "Distance of closest approach of two arbitrary hard ellipses in two dimensions", electronic Liquid Crystal Communications, 2007
  11. Zheng, Xiaoyu; Palffy-Muhoray, Peter (2007-06-26). "Distance of closest approach of two arbitrary hard ellipses in two dimensions". Physical Review E. 75 (6): 061709. arXiv: 0911.3420 . doi:10.1103/physreve.75.061709. ISSN   1539-3755. PMID   17677285. S2CID   7576313.
  12. X. Zheng and P. Palffy-Muhoray, Complete version containing contact point algorithm, May 4, 2009.
  13. Fortran90 subroutine for contact distance and contact point for 2D ellipses by X. Zheng and P. Palffy-Muhoray, May 2009.
  14. Zheng, Xiaoyu; Iglesias, Wilder; Palffy-Muhoray, Peter (2009-05-20). "Distance of closest approach of two arbitrary hard ellipsoids". Physical Review E. American Physical Society (APS). 79 (5): 057702. doi:10.1103/physreve.79.057702. ISSN   1539-3755. PMID   19518604.
  15. X. Zheng, W. Iglesias, P. Palffy-Muhoray, "Distance of closest approach of two arbitrary hard ellipsoids", electronic Liquid Crystal Communications, 2008
  16. Fortran90 subroutine for distance of closest approach of ellipsoids
  17. C subroutine for distance of closest approach of ellipsoids