Document camera

Last updated

Document cameras, also known as visual presenters, visualizers, digital overheads, or docucams, are real-time image capture devices used to display an object to a large audience. Document cameras have also been used as replacements for image scanners. Like an opaque projector, a document camera is able to magnify and project the images of actual, three-dimensional objects, as well as transparencies. [1] In essence, they are high-resolution web cams, mounted on arms, allowing them to be positioned over a page. The camera is connected to a projector or similar video streaming system, which enables a teacher, lecturer or presenter to write on a sheet of paper or to display a two- or three-dimensional object while the audience watches. Different types of document camera/visualizer allow great flexibility in terms of placement of objects. Larger objects, for example, can simply be placed in front of the camera and the camera rotated as needed, or a ceiling mounted document camera can also be used to allow a larger working area to be used.

Contents

Uses

Typical uses:

Document cameras replaced epidiascopes and overhead projectors, which were formerly used for this purpose. By means of the zoom feature a document camera can enlarge the small print in books and project a printed page as if it were a traditional transparency. Also, the room lighting does not have to be darkened to operate a document camera; in a classroom setting this is an asset. [2] Most document cameras can also send a video signal to a computer via USB cable. Sometimes document cameras are connected to an interactive whiteboard instead of a standard screen.

History

Video Lupe 1974, manufactured by Wolf Audio Visuals - document camera prototype model Video Loop 1974.jpg
Video Lupe 1974, manufactured by Wolf Audio Visuals - document camera prototype model
Video Loop (Wolf Audio Visuals) AV installation c. 1975 - prototype document camera Video Loop (Wolf Audio Visuals) AV installation c.1975.jpg
Video Loop (Wolf Audio Visuals) AV installation c. 1975 - prototype document camera
ELMO releases its first Visualiser EV-308 ELMO releases first Visualiser ( Document Camera-Visual Presenter).gif
ELMO releases its first Visualiser EV-308

Document cameras were developed to meet an increased demand for the ability to project and present original documents, plans, drawings and objects directly, rather than necessitating the prior preparation, that would be required for their use as part of an overhead projector-based presentation. The first Visualizer/document camera was developed by the companies WolfVision and Elmo and was launched at the photokina Trade Fair in 1988. [3] [4]

The widespread use of computers, projectors, and popular presentation programs such as Microsoft PowerPoint in meeting rooms meant that overhead projectors became less frequently used. Document cameras continue to provide a convenient and flexible way of allowing documents, books or slides to be spontaneously displayed during presentations as required.

The first attempts and prototypes were mostly simple video cameras on a copy stand. During the mid-1970s these were assembled and equipped with additional lighting to ensure that they were able to operate in darkened rooms, and also to provide a consistent quality of projected image.

At the end of the 1990s progressive scan cameras were introduced. Many visualizers available on the market today are capable of at least 30 frames per second output, which ensures high quality imaging and smoothness of motion in all resolutions and aspect ratios.

Technology

The design and specification of a document camera are a combination of several different technologies. The quality of the recorded image is dependent on the primary components, which are: optics, camera, lighting system and motherboard with appropriate firmware (software). The finished product is then realized by the production of different mechanical designs by individual manufacturers. Today High-Definition Document cameras are available with HDMI output, Audio/Video recording and playback is possible, and some High-Definition document cameras are also using high-speed WIFI technology to eliminate the need for cables.

Optics

Optics are one of the most critical components relating to image quality, and the quality of the optical system used will largely depend on the planned cost of the device. Simple or highly complex optical systems can be used, which can differ significantly in both quality and size. The iris or aperture is another important component of the optics. The iris controls and regulates the amount of light that passes through the lens onto the image sensor. A lens will focus on exactly one point of an object to be imaged onto the sensor. However, there is also an area in front of and behind the point of focus that will be perceived as being in sharp focus by the human eye. This is called the depth of field, and it is dependent upon the size of the iris or aperture. (the smaller the aperture, the greater the depth of field).

Camera

Progressive scan cameras use either CCD sensors or CMOS sensors. The general advantage of progressive scanning over the interlaced method is the much higher resolution that is the result. A progressive scan camera captures all scan lines at the same time, whereas an interlaced camera uses alternating sets of lines.

Basically, image sensors provide only monochrome images. With a 1-chip camera, colour information can be easily obtained through the use of colour filters over each pixel. With 1-chip cameras, the so-called Bayer filter is very common. Red, green and blue filters are arranged in a pattern. The number of green pixels is twice as large as that of the blue and red, thus the higher sensitivity and resolution of the human eye is replicated. To get a colour image, different algorithms are then used to interpolate the missing colour information.

A 3CCD camera module is another way to produce colour images. A prism is used to split white light into its red, green and blue components and a separate sensor is then used for each colour. This complex camera technology is used in 3-chip cameras and allows for excellent colour reproduction at very high resolutions.

Modern camera systems used in a document camera are able to provide high-resolution colour images at 30 frames per second. In a 3-chip camera, the measured resolution may be up to 1500 lines. In addition, the image can be adapted to fit common display aspect ratios of 4:3, 16:9 and 16:10.

Lighting system

Lighting is an essential part of a document camera. To ensure good colour rendition, the lighting system used to illuminate the image capture area should be as uniform as possible. The greater the light intensity, the more independent the document camera is from ambient light sources. Using powerful lighting systems enables smaller apertures to be used, and this, in turn, provides a significant increase in the depth of field that can be achieved by the document camera. Also, the higher the quality of the light source, the more light will reach the camera sensor, and this results in less noticeable noise, and therefore, the quality of the image will not be degraded.

Some document camera models integrate additional functionality into the light system, such as a synchronized light field that clearly indicates to the user at all times, by way of an illuminated image capture area or laser markers, the size and position of the imaging area, which adjusts simultaneously as the lens zooms in or out.

Motherboard and firmware

The motherboard plays an important role in image processing and it has a major influence on the quality of the eventual image that is produced. Larger and larger resolutions and high refresh rates generate large amounts of data that must be processed in real-time.

Document cameras have a wide variety of sophisticated automated systems that are designed to make the user experience as easy as possible. Permanent autofocus detection, for example, automatically adjusts the focus settings when a new object is displayed, with no need for user intervention. Other important features include automatic auto iris, auto exposure, auto white balance, and automatic gain control.

A document camera needs an image display device to show the information to the audience. Modern motherboards have a variety of connections to ensure flexibility of use. In addition to HDMI, DVI, VGA ports for connecting to displays, (projectors, monitors and video conferencing systems) there are also several interfaces provided to facilitate connection to a computer or interactive whiteboard. These interfaces are most commonly USB, Network (LAN) and serial.

In addition, an external PC or laptop can be connected to the document camera to allow for switching between a Power Point presentation and a live demonstration. Some models can also handle external storage devices and play files directly from a USB flash drive, or save images taken during the presentation onto it.

Some document camera manufacturers also provide for regular firmware upgrades, allowing users to have the opportunity to be equipped with, and benefit from new features as they become available.

Document camera types

Document cameras are generally divided into three groups. Smaller lightweight models are considered portable. Larger, sturdier, and more stable units are known as desktop models. Visualizers are designed to be ceiling mounted above a tabletop or podium.

Portable and desktop models

Portable and desktop models allow a similar working environment to that of an overhead projector. Many document camera users appreciate the added flexibility in terms of the variety of objects that can be displayed to an audience. Portable devices can be used in multiple locations without requiring any prior special installation.

Ceiling models

Ceiling Visualizer in use in a typical Telepresence installation App03 telepresence 01 with light.jpg
Ceiling Visualizer in use in a typical Telepresence installation

Ceiling-mounted document cameras/visualizers are a variation from the traditional desktop models and allow for larger objects to be displayed. There is no desktop technical equipment to restrict the views of speaker and audience, as the technology is installed unobtrusively in the ceiling. Ceiling models are often used to support videoconferencing or telepresence systems to further enhance the immersive experience for participants.

Document camera scanners

sceyeX document camera SilverCreations - model "sceyeX" 10MP Document Scanner 03-2013.jpg
sceyeX document camera

Document cameras have also been used as replacements for image scanners. [5] Capturing images on document cameras differs from that of flatbed and automatic document feeder scanners in that there are no moving parts required to scan the object. Conventionally either the illumination/reflector rod inside the scanner must be moved over the document (such as for a flatbed scanner), or the document must be passed over the rod (such as for feeder scanners) in order to produce a scan of a whole image. Document cameras capture the whole document or object in one step, usually instantly. Typically, documents are placed on a flat surface, usually the office desk, underneath the capture area of the document camera. The process of whole-surface-at-once capturing has the benefit of increasing reaction time for the workflow of scanning. After being captured, the images are usually processed through software that may enhance the image and perform such tasks like automatically rotating, cropping, and straightening them. [6]

It is not required that the documents or objects being scanned make contact with the document camera, therefore increasing flexibility of the types of documents which are able to be scanned. Objects that have previously been difficult to scan on conventional scanners are now able to be done so with one device. This includes in particular documents that are of varying sizes and shapes, stapled, in folders, or bent/crumpled which may get jammed in a feed scanner. Other objects include books, magazines, receipts, letters, tickets etc. No moving parts can also remove the need for maintenance, a consideration in the Total cost of ownership, which includes the continuing operational costs of scanners.

Increased reaction time whilst scanning also has benefits in the realm of context-scanning. ADF scanners, whilst very fast and very good at batch scanning, also require pre- and post-processing of the documents. Document cameras can be integrated directly into a Workflow or process, for example, a teller at a bank. The document is scanned directly in the context of the customer, in which it is to be placed or used. Reaction time is an advantage in these situations. Document cameras usually also require a small amount of space and are often portable. [7]

Whilst scanning with document cameras may have a quick reaction time, large amounts of batch scanning of even, unstapled documents is more efficient with an ADF scanner. There are challenges that face this kind of technology regarding external factors (such as lighting) which may have influence on the scan results. The way in which these issues are resolved strongly depends on the sophistication of the product and how it deals with these issues.

See also

Related Research Articles

<span class="mw-page-title-main">RGB color model</span> Color model based on red, green, and blue

The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

<span class="mw-page-title-main">Imaging</span> Representation or reproduction of an objects form

Imaging is the representation or reproduction of an object's form; especially a visual representation.

A barcode reader or barcode scanner is an optical scanner that can read printed barcodes and send the data they contain to computer. Like a flatbed scanner, it consists of a light source, a lens, and a light sensor for translating optical impulses into electrical signals. Additionally, nearly all barcode readers contain decoder circuitry that can analyse the barcode's image data provided by the sensor and send the barcode's content to the scanner's output port.

<span class="mw-page-title-main">Image scanner</span> Device that optically scans images, printed text

An image scanner is a device that optically scans images, printed text, handwriting, or an object and converts it to a digital image. The most common type of scanner used in offices and in the home is the flatbed scanner, where the document is placed on a glass window for scanning. A sheetfed scanner, which moves the page across an image sensor using a series of rollers, may be used to scan one document at a time or multiple, as in an automatic document feeder. A handheld scanner is a portable version of an image scanner that can be used on any flat surface. Scans are usually downloaded to the computer that the scanner is connected to, although some scanners are able to store scans on standalone flash media.

<span class="mw-page-title-main">Cave automatic virtual environment</span> Immersive virtual reality environment

A cave automatic virtual environment is an immersive virtual reality environment where projectors are directed to between three and six of the walls of a room-sized cube. The name is also a reference to the allegory of the Cave in Plato's Republic in which a philosopher contemplates perception, reality, and illusion.

<span class="mw-page-title-main">Digital camera back</span> Digital image sensor that attaches to the back of a film camera

A digital camera back is a device that attaches to the back of a camera in place of the traditional negative film holder and contains an electronic image sensor. This allows cameras that were designed to use film take digital photographs. These camera backs are generally expensive by consumer standards and are primarily built to be attached on medium- and large-format cameras used by professional photographers.

Image resolution is the level of detail of an image. The term applies to digital images, film images, and other types of images. "Higher resolution" means more image detail. Image resolution can be measured in various ways. Resolution quantifies how close lines can be to each other and still be visibly resolved. Resolution units can be tied to physical sizes, to the overall size of a picture, or to angular subtense. Instead of single lines, line pairs are often used, composed of a dark line and an adjacent light line; for example, a resolution of 10 lines per millimeter means 5 dark lines alternating with 5 light lines, or 5 line pairs per millimeter. Photographic lens are most often quoted in line pairs per millimeter.

<span class="mw-page-title-main">Handheld projector</span> Image projector in a handheld device

A handheld projector is an image projector in a handheld device. It was developed as a computer display device for compact portable devices such as mobile phones, personal digital assistants, and digital cameras, which have sufficient storage capacity to handle presentation materials but are too small to accommodate a display screen that an audience can see easily. Handheld projectors involve miniaturized hardware, and software that can project digital images onto a nearby viewing surface.

<span class="mw-page-title-main">3D scanning</span> Scanning of an object or environment to collect data on its shape

3D scanning is the process of analyzing a real-world object or environment to collect three dimensional data of its shape and possibly its appearance. The collected data can then be used to construct digital 3D models.

<span class="mw-page-title-main">Motion picture film scanner</span> Device that digitises film stock

A motion picture film scanner is a device used in digital filmmaking to scan original film for storage as high-resolution digital intermediate files.

<span class="mw-page-title-main">Digital photography</span> Photography with a digital camera

Digital photography uses cameras containing arrays of electronic photodetectors interfaced to an analog-to-digital converter (ADC) to produce images focused by a lens, as opposed to an exposure on photographic film. The digitized image is stored as a computer file ready for further digital processing, viewing, electronic publishing, or digital printing. It is a form of digital imaging based on gathering visible light.

The following are common definitions related to the machine vision field.

<span class="mw-page-title-main">Scanography</span> Graphic arts medium

Scanography, more commonly referred to as scanner photography, is the process of capturing digitized images of objects for the purpose of creating printable art using a flatbed "photo" scanner with a CCD array capturing device. Fine art scanography differs from traditional document scanning by using atypical objects, often three-dimensional, as well as from photography, due to the nature of the scanner's operation.

The merits of digital versus film photography were considered by photographers and filmmakers in the early 21st century after consumer digital cameras became widely available. Digital photography and digital cinematography have both advantages and disadvantages relative to still film and motion picture film photography. In the 21st century, photography came to be predominantly digital, but traditional photochemical methods continue to serve many users and applications.

A structured-light 3D scanner is a 3D scanning device for measuring the three-dimensional shape of an object using projected light patterns and a camera system.

<span class="mw-page-title-main">WolfVision</span>

WolfVision GmbH is a developer and manufacturer of presentation, collaboration, and knowledge sharing systems and solutions based in the Vorarlberg region of Austria. WolfVision Visualizer systems are special optoelectronic devices designed to pick up images of 3-dimensional objects, documents, books, photos and other items from a non-reflective working surface, providing a high resolution output signal for video/data projectors, monitors, interactive whiteboards or videoconferencing systems.

An office camera is a digital camera device that performs tasks in offices such as document scanning, physical object imaging, video presentation and web conferencing. It is similar to the document camera, which is normally used on podiums in classrooms and meeting rooms for presentations.

This glossary defines terms that are used in the document "Defining Video Quality Requirements: A Guide for Public Safety", developed by the Video Quality in Public Safety (VQIPS) Working Group. It contains terminology and explanations of concepts relevant to the video industry. The purpose of the glossary is to inform the reader of commonly used vocabulary terms in the video domain. This glossary was compiled from various industry sources.

<span class="mw-page-title-main">IllumiRoom</span> Microsoft research Project

IllumiRoom is a Microsoft Research project that augments a television screen with images projected onto the wall and surrounding objects. The current proof-of-concept uses a Kinect sensor and video projector. The Kinect sensor captures the geometry and colors of the area of the room that surrounds the television, and the projector displays video around the television that corresponds to a video source on the television, such as a video game or movie.

Artec 3D is a developer and manufacturer of 3D scanning hardware and software. The company is headquartered in Luxembourg, with offices also in the United States, China (Shanghai) and Montenegro (Bar). Artec 3D's products and services are used in various industries, including engineering, healthcare, media and design, entertainment, education, fashion and historic preservation. In 2013, Artec 3D launched an automated full-body 3D scanning system, Shapify.me, that creates 3D portraits called “Shapies.”

References

  1. Everhart, N. (2000), "Big", School Library Journal, 46 (6).
  2. Everhart, N. (2000), "Big", School Library Journal, 46 (6).
  3. "Presentation, Collaboration & Visualizer Systems".
  4. "Visual Presenter with 8-Power Zoom Lens". New Technology Japan. 16. Japan External Trade Organization, Machinery and Technology Dept: 37. 1988. Retrieved 2014-04-21.
  5. Juniper, Adam (April 11, 2024). "Best document camera in 2024: which visualizer is the right one for you?". Digital Camera World. Future Publishing.
  6. "sceye® - an innovative document scanner for the professional desktop". Kodak. Archived from the original on 18 May 2013. Retrieved 6 March 2013.
  7. "Why should you choose sceye?". SilverCreations Ag. Retrieved 1 March 2013.