Document camera

Last updated

Document cameras , also known as visual presenters, visualizers, digital overheads, or docucams, are high-resolution, real-time image capture devices used to display an object to a large audience, such as in a classroom or a lecture hall. They can also serve as replacements for image scanners. Similar to opaque projectors, document cameras can magnify and project the images of actual, three-dimensional objects, as well as transparencies. [1]

Contents

To operate a document camera, a webcam is mounted on arms, allowing them to be positioned over a page. The camera connects to a projector or similar video streaming system, enabling a presenter to write on a sheet of paper or display a two- or three-dimensional object while the audience watches. Larger objects, for instance, can be positioned in front of the camera, which can then be rotated as needed. Alternatively, a ceiling-mounted document camera can create a larger working area.

Uses

Typical uses include:

Document cameras replaced epidiascopes and overhead projectors, which were formerly used for this purpose. By means of a zoom feature, a document camera can enlarge the small print in books and project a printed page as if it were a traditional transparency. Document cameras do not require the lights to be dimmed in the room they are used in, contrary to what overhead projectors require to be visible. [1] Most document cameras can also send a video signal to a computer via a USB cable. Some document cameras are connected to an interactive whiteboard instead of a standard screen.

History

Video Lupe 1974, manufactured by Wolf Audio Visuals - document camera prototype model Video Loop 1974.jpg
Video Lupe 1974, manufactured by Wolf Audio Visuals - document camera prototype model
A Video Lupe AV installation (1975) prototype document camera Video Loop (Wolf Audio Visuals) AV installation c.1975.jpg
A Video Lupe AV installation (1975) prototype document camera
Elmo releases its first Visualizer EV-308 ELMO releases first Visualiser ( Document Camera-Visual Presenter).gif
Elmo releases its first Visualizer EV-308

Document cameras were developed to meet increased demand for the ability to project and present original documents, plans, drawings, and objects directly rather than necessitating the prior preparation required for their use as part of an overhead projector-based presentation. The first document camera, also known as a visualizer, was developed by WolfVision and Elmo and launched at the Photokina Trade Fair in 1988. [2] [3]

The widespread use of computers, projectors, and popular presentation programs such as Microsoft PowerPoint in meeting rooms led to overhead projectors being used less frequently.

Early prototypes were simple video cameras mounted on a copy-stands. During the mid-1970s, these were assembled and equipped with additional lighting to provide a consistent quality of the projected image, as well as enable use in a darkened room.

Toward the end of the 1990s, progressive scan cameras were introduced. Many visualizers available on the market today are capable of an output of at least 30 frames per second.

Technology

The design and specification of a document camera combine several different technologies. Image quality depends on primary components: optics, camera, lighting, and the motherboard with appropriate firmware (software). The finished product is then realized by the production of different mechanical designs by individual manufacturers. Some document cameras offer HDMI output, audio/video recording, and Wi-Fi connectivity.

Optics

Optics are critical to image quality and vary based on the device's cost. Simple or highly complex optical systems can be used, which can differ significantly in quality and size. The iris or aperture is another important component of the optics. The iris controls and regulates the amount of light that passes through the lens onto the image sensor. A lens focuses on a single point of the object, projecting it onto the sensor. However, there is also an area in front of and behind the point of focus that will be perceived as being in sharp focus by the human eye. This is called the depth of field, and it is dependent upon the size of the iris or aperture. The smaller the aperture, the greater the depth of field, which brings more of the image into sharp focus.

Camera

Progressive scan cameras use either CCD sensors or CMOS sensors. The general advantage of progressive scanning over the interlaced method is the much higher resolution. A progressive scan camera captures all scan lines at the same time, whereas an interlaced camera uses alternating sets of lines.

Image sensors provide only monochrome images. With a 1-chip camera, color information can be obtained through the use of color filters over each pixel. With 1-chip cameras, the Bayer filter is very commonly used. Red, green and blue filters are arranged in a pattern, where the number of green pixels is twice as large as that of the blue or red; thus, the higher sensitivity and resolution of the human eye is replicated. To get a color image, different algorithms are then used to interpolate the missing color information.

A 3CCD camera module is another way to produce color images. A prism is used to split white light into its red, green, blue components, and a separate sensor is then used for each color. This complex camera technology is used in 3-chip cameras and allows for excellent color reproduction at very high resolutions.

Modern camera systems used in a document camera are able to provide high-resolution color images at 30 frames per second. In a 3-chip camera, the measured resolution may be up to 1,500 lines. In addition, the image can be adapted to fit common display aspect ratios of 4:3, 16:9, and 16:10.

Lighting system

A uniform lighting system is essential for accurate color rendition in document cameras.

Some document camera models integrate additional functionality into the light system, such as a synchronized light field that indicates to the user at all times, by way of an illuminated image capture area or laser markers, the size and position of the imaging area, which adjusts simultaneously as the lens zooms in or out.

Motherboard and firmware

The motherboard plays an important role in image processing and it has a major influence on the quality of the eventual image that is produced. Larger and larger resolutions and high refresh rates generate large amounts of data that must be processed in real time.

Document cameras are equipped with a range of advanced automated systems designed to enhance ease of use and improve functionality and image quality. For instance, permanent auto-focus detection automatically adjusts focus settings whenever a new object is displayed, eliminating the need for manual adjustments. Additional key features include automatic iris adjustment, auto exposure, white balance, and automatic gain control.

Modern motherboards have a variety of connections to ensure flexibility of use. In addition to HDMI, DVI and VGA ports for connecting to displays (projectors, monitors, and video conferencing systems), there are also several interfaces provided to facilitate connection to a computer or interactive whiteboard. These interfaces are most commonly USB, network (LAN), and serial.

In addition, an external PC or laptop can be connected to the document camera to allow for switching between a Power Point presentation and a live demonstration. Some models can also handle external storage devices and play files directly from a USB flash drive, or save images taken during the presentation onto it.

Some document camera manufacturers also provide for regular firmware upgrades.

Document camera types

Document cameras are generally divided into three groups:

Portable and desktop models

Portable and desktop models allow a working environment similar to an overhead projector. Many document camera users appreciate the added flexibility regarding the variety of objects that can be displayed to an audience. Portable devices can be used in multiple locations without requiring any prior installation.

Ceiling models

Ceiling visualizer in use in a typical telepresence installation. App03 telepresence 01 with light.jpg
Ceiling visualizer in use in a typical telepresence installation.

Ceiling-mounted document cameras/visualizers are a variation from the traditional desktop models and allow for larger objects to be displayed. There is no desktop technical equipment to restrict the views of the speaker and audience, as the technology is installed unobtrusively in the ceiling. Ceiling models are often used to support videoconferencing or telepresence systems to further enhance the immersive experience for participants.

Document camera scanners

SceyeX document camera SilverCreations - model "sceyeX" 10MP Document Scanner 03-2013.jpg
SceyeX document camera

Document cameras have also been used as replacements for image scanners. [4] Capturing images on document cameras differs from that of flatbed and automatic document feeder scanners in that there are no moving parts required to scan the object. Conventionally either the illumination/reflector rod inside the scanner must be moved over the document (such as for a flatbed scanner), or the document must be passed over the rod (such as for feeder scanners) in order to produce a scan of a whole image. Document cameras capture the whole document or object in one step, usually instantly. Typically, documents are placed on a flat surface, usually the office desk, underneath the capture area of the document camera. The process of whole-surface-at-once capturing has the benefit of increasing reaction time for the workflow of scanning. After being captured, the images are usually processed through software that may enhance the image and perform such tasks like automatically rotating, cropping, and straightening them. [5]

The documents or objects being scanned are not required to make contact with the document camera, increasing the flexibility of the types of documents that can be checked. Objects that have previously been difficult to scan on conventional scanners can now do so with one device. This includes, in particular, documents of varying sizes and shapes, stapled, in folders, bent, or crumpled, which may get jammed in a feed scanner. Other objects include books, magazines, receipts, letters, tickets, etc. No moving parts can also remove the need for maintenance, a consideration in the total cost of ownership, which includes the continuing operational costs of scanners.

Increased reaction time whilst scanning also has benefits in the realm of context-scanning. ADF scanners, whilst very fast and very good at batch scanning, also require pre and post-processing of the documents. Document cameras can be integrated directly into a workflow or process, for example, a teller at a bank. The document is scanned directly in the context of the customer, in which it is to be placed or used. Reaction time is an advantage in these situations. Document cameras usually also require a small amount of space and are often portable. [6]

While scanning with document cameras may have a quick reaction time, large batch scanning of even and unstapled documents is more efficient with an ADF scanner. This kind of technology faces challenges regarding external factors (such as lighting) that may influence the scan results. How these issues are resolved firmly depends on the sophistication of the product and how it deals with these issues.

See also

Related Research Articles

<span class="mw-page-title-main">Digital camera</span> Camera that captures photographs or video in digital format

A digital camera, also called a digicam, is a camera that captures photographs in digital memory. Most cameras produced today are digital, largely replacing those that capture images on photographic film or film stock. Digital cameras are now widely incorporated into mobile devices like smartphones with the same or more capabilities and features of dedicated cameras. High-end, high-definition dedicated cameras are still commonly used by professionals and those who desire to take higher-quality photographs.

<span class="mw-page-title-main">Imaging</span> Representation or reproduction of an objects form

Imaging is the representation or reproduction of an object's form; especially a visual representation.

<span class="mw-page-title-main">Overhead projector</span> Device that projects a transparent image

An overhead projector, like a film or slide projector, uses light to project an enlarged image on a screen, allowing the view of a small document or picture to be shared with a large audience.

A barcode reader or barcode scanner is an optical scanner that can read printed barcodes and send the data they contain to computer. Like a flatbed scanner, it consists of a light source, a lens, and a light sensor for translating optical impulses into electrical signals. Additionally, nearly all barcode readers contain decoder circuitry that can analyse the barcode's image data provided by the sensor and send the barcode's content to the scanner's output port.

<span class="mw-page-title-main">Image scanner</span> Device that optically scans images, printed text

An image scanner is a device that optically scans images, printed text, handwriting, or an object and converts it to a digital image. The most common type of scanner used in offices and in the home is the flatbed scanner, where the document is placed on a glass window for scanning. A sheetfed scanner, which moves the page across an image sensor using a series of rollers, may be used to scan one document at a time or multiple, as in an automatic document feeder. A handheld scanner is a portable version of an image scanner that can be used on any flat surface. Scans are usually downloaded to the computer that the scanner is connected to, although some scanners are able to store scans on standalone flash media.

<span class="mw-page-title-main">Volume rendering</span> Representing a 3D-modeled object or dataset as a 2D projection

In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field.

<span class="mw-page-title-main">Digital camera back</span> Digital image sensor that attaches to the back of a film camera

A digital camera back is a device that attaches to the back of a camera in place of the traditional negative film holder and contains an electronic image sensor. This allows cameras that were designed to use film take digital photographs. These camera backs are generally expensive by consumer standards and are primarily built to be attached on medium- and large-format cameras used by professional photographers.

Image resolution is the level of detail of an image. The term applies to digital images, film images, and other types of images. "Higher resolution" means more image detail. Image resolution can be measured in various ways. Resolution quantifies how close lines can be to each other and still be visibly resolved. Resolution units can be tied to physical sizes, to the overall size of a picture, or to angular subtense. Instead of single lines, line pairs are often used, composed of a dark line and an adjacent light line; for example, a resolution of 10 lines per millimeter means 5 dark lines alternating with 5 light lines, or 5 line pairs per millimeter. Photographic lens are most often quoted in line pairs per millimeter.

<span class="mw-page-title-main">Handheld projector</span> Image projector in a handheld device

A handheld projector is an image projector in a handheld device. It was developed as a computer display device for compact portable devices such as mobile phones, personal digital assistants, and digital cameras, which have sufficient storage capacity to handle presentation materials but are too small to accommodate a display screen that an audience can see easily. Handheld projectors involve miniaturized hardware, and software that can project digital images onto a nearby viewing surface.

Digital "darkroom" is the hardware, software and techniques used in digital photography that replace the darkroom equivalents, such as enlarging, cropping, dodging and burning, as well as processes that do not have a film equivalent.

<span class="mw-page-title-main">3D scanning</span> Scanning of an object or environment to collect data on its shape

3D scanning is the process of analyzing a real-world object or environment to collect three dimensional data of its shape and possibly its appearance. The collected data can then be used to construct digital 3D models.

<span class="mw-page-title-main">Motion picture film scanner</span> Device that digitises film stock

A motion picture film scanner is a device used in digital filmmaking to scan original film for storage as high-resolution digital intermediate files.

<span class="mw-page-title-main">Digital photography</span> Photography with a digital camera

Digital photography uses cameras containing arrays of electronic photodetectors interfaced to an analog-to-digital converter (ADC) to produce images focused by a lens, as opposed to an exposure on photographic film. The digitized image is stored as a computer file ready for further digital processing, viewing, electronic publishing, or digital printing. It is a form of digital imaging based on gathering visible light.

The following are common definitions related to the machine vision field.

<span class="mw-page-title-main">Scanography</span> Graphic arts medium

Scanography, more commonly referred to as scanner photography, is the process of capturing digitized images of objects for the purpose of creating printable art using a flatbed "photo" scanner with a CCD array capturing device. Fine art scanography differs from traditional document scanning by using atypical objects, often three-dimensional, as well as from photography, due to the nature of the scanner's operation.

A structured-light 3D scanner is a device that measures the three-dimensional shape of an object by projecting light patterns—such as grids or stripes—onto it and capturing their deformation with cameras. This technique allows for precise surface reconstruction by analyzing the displacement of the projected patterns, which are processed into detailed 3D models using specialized algorithms.

<span class="mw-page-title-main">WolfVision</span>

WolfVision GmbH is a developer and manufacturer of presentation, collaboration, and knowledge sharing systems and solutions based in the Vorarlberg region of Austria. WolfVision Visualizer systems are special optoelectronic devices designed to pick up images of 3-dimensional objects, documents, books, photos and other items from a non-reflective working surface, providing a high resolution output signal for video/data projectors, monitors, interactive whiteboards or videoconferencing systems.

An office camera is a digital camera device that performs tasks in offices such as document scanning, physical object imaging, video presentation and web conferencing. It is similar to the document camera, which is normally used on podiums in classrooms and meeting rooms for presentations.

This glossary defines terms that are used in the document "Defining Video Quality Requirements: A Guide for Public Safety", developed by the Video Quality in Public Safety (VQIPS) Working Group. It contains terminology and explanations of concepts relevant to the video industry. The purpose of the glossary is to inform the reader of commonly used vocabulary terms in the video domain. This glossary was compiled from various industry sources.

<span class="mw-page-title-main">IllumiRoom</span> Microsoft research Project

IllumiRoom is a Microsoft Research project that augments a television screen with images projected onto the wall and surrounding objects. The current proof-of-concept uses a Kinect sensor and video projector. The Kinect sensor captures the geometry and colors of the area of the room that surrounds the television, and the projector displays video around the television that corresponds to a video source on the television, such as a video game or movie.

References

  1. 1 2 Everhart, N. L.; Everhart, H. (2000), "Big: When it Comes to Enlarging Electronic Images, There's Nothing Like a Data Projector", School Library Journal, 46 (6): 46–49
  2. "Presentation, Collaboration & Visualizer Systems".
  3. "Visual Presenter with 8-Power Zoom Lens". New Technology Japan. 16. Japan External Trade Organization, Machinery and Technology Dept: 37. 1988. Retrieved 2014-04-21.
  4. Juniper, Adam (April 11, 2024). "Best document camera in 2024: which visualizer is the right one for you?". Digital Camera World. Future Publishing.
  5. "sceye® - an innovative document scanner for the professional desktop". Kodak. Archived from the original on 18 May 2013. Retrieved 6 March 2013.
  6. "Why should you choose sceye?". SilverCreations Ag. Retrieved 1 March 2013.