Dual-control modes of ventilation

Last updated
pressure-regulated volume control Pressure regulated volume control graphic.jpg
pressure-regulated volume control

Dual-control modes of ventilation are auto-regulated pressure-controlled modes of mechanical ventilation with a user-selected tidal volume target. The ventilator adjusts the pressure limit of the next breath as necessary according to the previous breath's measured exhaled tidal volume. Peak airway pressure varies from breath to breath according to changes in the patient's airway resistance and lung compliance.

Pressure control (PC) is a mode of mechanical ventilation alone and a variable within other modes of mechanical ventilation. Pressure control is used to regulate pressures applied during mechanical ventilation. Air delivered into the patients lungs (breaths) are currently regulated by Volume Control or Pressure Control. In pressure controlled breaths a tidal volume achieved is based on how much volume can be delivered before the pressure control limit is reached.

Modes of mechanical ventilation are one of the most important aspects of the usage of mechanical ventilation. The mode refers to the method of inspiratory support. In general, mode selection is based on clinician familiarity and institutional preferences, since there is a paucity of evidence indicating that the mode affects clinical outcome. The most frequently used forms of volume-limited mechanical ventilation are intermittent mandatory ventilation (IMV) and continuous mandatory ventilation (CMV). There have been substantial changes in the nomenclature of mechanical ventilation over the years, but more recently it has become standardized by many respirology and pulmonology groups. Writing a mode is most proper in all capital letters with a dash between the control variable and the strategy

Tidal volume normal volume of air displaced between normal inhalation and exhalation when extra effort is not applied; in a young human adult, approximately 500 mL per inspiration

Tidal volume is the lung volume representing the normal volume of air displaced between normal inhalation and exhalation when extra effort is not applied. In a healthy, young human adult, tidal volume is approximately 500 mL per inspiration or 7 mL/kg of body mass.

Contents

The pressure waveform is square, and the flow waveform is decelerating. This mode is a form of continuous mandatory ventilation as a minimum number of passive breaths will be time-triggered, and patient-initiated breaths are time-cycled and regulated according to operator-set tidal volume. [1]

Continuous mandatory ventilation (CMV) is a mode of mechanical ventilation in which breaths are delivered based on set variables. Still used in the operating room, in previous nomenclature CMV referred to "controlled mechanical ventilation", a mode of ventilation characterized by a ventilator that makes no effort to sense patient breathing effort. In continuous mandatory ventilation, the ventilator can be triggered either by the patient or mechanically by the ventilator. The ventilator is set to deliver a breath according to parameters selected by the operator. "Controlled mechanical ventilation" is an outdated expansion for "CMV"; "continuous mandatory ventilation" is now accepted standard nomenclature of mechanical ventilation. CMV today can assist or control dynamically, depending on transient presence or absence of spontaneous breathing effort. Thus, today's CMV would have been called ACV in older nomenclature, and the original form of CMV is a thing of the past. But despite continual technological improvement over the past half century, CMV sometimes may still be uncomfortable for the patient.

The first few breaths are delivered to the patient according to the ventilator manufacturer's particular algorithm for determining the patient's resistance and compliance. These are 'test breaths' that the ventilator can then use to calculate the optimal pressures for the next, regulated breaths. The pressure is constant during the set inspiratory time as with pressure-controlled CMV. The ventilator will use the exhaled tidal volume measured at the end of that breath's expiratory phase to calculate the pressure of the next breath. If the exhaled tidal volume is lower than the software threshold, the next breath will be delivered at a higher pressure, and if the exhaled tidal volume is higher than the software threshold, the next breath will be delivered at a lower pressure.

The theory is to ensure that the lowest inspiratory pressure necessary to achieve the desired tidal volume is used. As a safety feature, the ventilator will not increase the pressure beyond a predetermined high pressure limit. This is usually tied to (but not the same as) the operator-set high pressure alarm setting. If the ventilator delivers a breath at this high pressure limit and is still unable to achieve the operator-desired exhaled tidal volume, an alarm will sound to warn the operator that the volume target cannot be met.

Advantages

Disadvantages

See also

Mechanical ventilation, or assisted ventilation, is the medical term for artificial ventilation where mechanical means are used to assist or replace spontaneous breathing. This may involve a machine called a ventilator, or the breathing may be assisted manually by a suitably qualified professional, such as an anesthesiologist, respiratory therapist, or paramedic, by compressing a bag valve mask device.

Related Research Articles

Medical ventilator Device that serves for ventilation

A medical ventilator is a machine designed to provide mechanical ventilation by moving breathable air into and out of the lungs, to deliver breaths to a patient who is physically unable to breathe, or breathing insufficiently.

Spirometry

Spirometry is the most common of the pulmonary function tests (PFTs). It measures lung function, specifically the amount (volume) and/or speed (flow) of air that can be inhaled and exhaled. Spirometry is helpful in assessing breathing patterns that identify conditions such as asthma, pulmonary fibrosis, cystic fibrosis, and COPD. It is also helpful as part of a system of health surveillance, in which breathing patterns are measured over time.

Respiratory arrest is caused by apnea or respiratory dysfunction severe enough it will not sustain the body. Prolonged apnea refers to a patient who has stopped breathing for a long period of time. If the heart muscle contraction is intact, the condition is known as respiratory arrest. An abrupt stop of pulmonary gas exchange lasting for more than five minutes may damage vital organs especially the brain, possibly permanently. Lack of oxygen to the brain causes loss of consciousness. Brain injury is likely if respiratory arrest goes untreated for more than three minutes, and death is almost certain if more than five minutes.

Bag valve mask

A bag valve mask, abbreviated to BVM and sometimes known by the proprietary name Ambu bag or generically as a manual resuscitator or "self-inflating bag", is a hand-held device commonly used to provide positive pressure ventilation to patients who are not breathing or not breathing adequately. The device is a required part of resuscitation kits for trained professionals in out-of-hospital settings (such as ambulance crews) and is also frequently used in hospitals as part of standard equipment found on a crash cart, in emergency rooms or other critical care settings. Underscoring the frequency and prominence of BVM use in the United States, the American Heart Association (AHA) Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiac Care recommend that "all healthcare providers should be familiar with the use of the bag-mask device." Manual resuscitators are also used within the hospital for temporary ventilation of patients dependent on mechanical ventilators when the mechanical ventilator needs to be examined for possible malfunction or when ventilator-dependent patients are transported within the hospital. Two principal types of manual resuscitators exist; one version is self-filling with air, although additional oxygen (O2) can be added but is not necessary for the device to function. The other principal type of manual resuscitator (flow-inflation) is heavily used in non-emergency applications in the operating room to ventilate patients during anesthesia induction and recovery.

High-frequency ventilation is a type of mechanical ventilation which utilizes a respiratory rate greater than 4 times the normal value. and very small tidal volumes. High frequency ventilation is thought to reduce ventilator-associated lung injury (VALI), especially in the context of ARDS and acute lung injury. This is commonly referred to as lung protective ventilation. There are different types of high-frequency ventilation. Each type has its own unique advantages and disadvantages. The types of HFV are characterized by the delivery system and the type of exhalation phase.

Ventilator-associated lung injury (VALI) is an acute lung injury that develops during mechanical ventilation and is termed ventilator-induced lung injury (VILI) if it can be proven that the mechanical ventilation caused the acute lung injury. In contrast, ventilator-associated lung injury (VALI) exists if the cause cannot be proven. VALI is the appropriate term in most situations because it is virtually impossible to prove what actually caused the lung injury in the hospital.

Pressure support ventilation (PSV), also known as pressure support, is a spontaneous mode of ventilation. The patient initiates every breath and the ventilator delivers support with the preset pressure value. With support from the ventilator, the patient also regulates his own respiratory rate and tidal volume.

Airway pressure release ventilation pressure control mode of mechanical ventilation

Airway pressure release ventilation (APRV) is a pressure control mode of mechanical ventilation that utilizes an inverse ratio ventilation strategy. APRV is an applied continuous positive airway pressure (CPAP) that at a set timed interval releases the applied pressure. Depending on the ventilator manufacturer, it may be referred to as BiVent. This is just as appropriate to use, since the only difference is that the term APRV is copyrighted.

Liquid ventilator

A liquid ventilator is similar to a medical ventilator except that it should be able to ensure reliable total liquid ventilation with a breatheable liquid ·. Liquid ventilators are prototypes that may have been used for animal experimentations but experts recommend continued development of a liquid ventilator toward clinical applications.

Many terms are used in mechanical ventilation, some are specific to brand, model, trademark and mode of mechanical ventilation. There is a standardized nomenclature of mechanical ventilation that is specific about nomenclature related to modes, but not settings and variables.

Mandatory minute ventilation (MMV) is a mode of mechanical ventilation which requires the operator to determine what the appropriate minute ventilation for the patient should be and the ventilator then monitors the patient's ability to generate this volume. If the calculation suggests the volume target will not be met, supplemental breaths are delivered at the targeted volume to achieve the desired minute ventilation.

Intermittent Mandatory Ventilation (IMV) refers to any mode of mechanical ventilation where a regular series of breaths are scheduled but the ventilator senses patient effort and reschedules mandatory breaths based on the calculated need of the patient. Similar to continuous mandatory ventilation in parameters set for the patients pressures and volumes but distinct in its ability to support a patient by either supporting their own effort or providing support when patient effort is not sensed. IMV is frequently paired with additional strategies to improve weaning from ventilator support or to improve cardiovascular stability in patients who may need full life support.

In lung ventilators Flow waveform is the shape of air flow that is blown into the patient's airways. Computer technology allows the practitioner to select particular flow patterns, along with volume and pressure settings, in order to achieve the best patient outcomes and reduce complications experienced while on a mechanical ventilator. Modern lung ventilators are able to generate three basic wave forms of flow: squared waveform, descending waveform, and sinusoidal waveform. A square waveform pattern is found on most mechanical ventilators, old and new, and achieves a constant flow. During the inspiration phase, the flow rate rises to a predetermined level and remains constant, thus giving the appearance of a square wave form. This produces the shortest inspiratory time compared to other flow patterns. A decelerating flow waveform pattern, also known as descending ramp, achieves the highest level of flow at the start of a breath, when patient flow demand is often greatest.

Peak inspiratory pressure (PIP) is the highest level of pressure applied to the lungs during inhalation. In mechanical ventilation the number reflects a positive pressure in centimeters of water pressure (cmH2O). In normal breathing, it may sometimes be referred to as the maximal inspiratory pressure (MIPO), which is a negative value.

SensorMedics high-frequency oscillatory ventilator

The SensorMedics high-frequency oscillatory ventilator is a patented high-frequency mechanical ventilator by Cardinal Health. The 3100A model was approved for use in the United States by the Food and Drug Administration in 1991 for neonatal application for the treatment of all forms of respiratory failure; then subsequently approved in 1995 for Pediatric Application, with no upper "weight limit", for treating selected patients failing conventional ventilation. The High-frequency oscillatory ventilator

References