Nomenclature of mechanical ventilation

Last updated

Many terms are used in mechanical ventilation, some are specific to brand, model, trademark and mode of mechanical ventilation. [1] There is a standardized nomenclature of mechanical ventilation that is specific about nomenclature related to modes, but not settings and variables. [2]

Contents

Terms are now split into acronyms of CONTROL VARIABLE + BREATH SEQUENCE + TARGETING SCHEME. As in PC-CMV, Pressure Controlled Continuous Mandatory Ventilation. The term trigger (commonly flow or pressure) denotes the criteria that starts inspiration and cycle denotes the criteria that stops it. The target variable should not be confused with the cycle variable or the control variable. The target variable only sets an upper limit for pressure, volume or flow.

Control variable

The physical parameter that controls the breath in accordance with the equation of motion

Equation of motion

Pressure = Elastance*Volume + Resistance*Flow

Volume control (VC)

Volume controlled ventilation is ventilation where both volume and flow are controlled by the ventilator. Normally, flow is set to a fixed amount, meaning volume increases linearly over time.

Any mode that relies on flow to control inspiration falls under the VC- category.

Pressure control (PC)

Pressure controlled ventilation is where pressure as a function of time is controlled by the ventilator. Normally, pressure is set to a specific amount for a specific breath duration, letting volume and flow vary according to patient demands.

Any mode that relies on pressure to deliver a breath falls under the PC- category.

Time control (TC)

Rarely breaths can be purely time controlled. An example is intrapulmonary percussive ventilation. Here only time is set by the operator and pressure and flow change obeying the equation of motion.

Breath Sequence

Continuous mandatory ventilation (CMV)

Commonly known as “Assist/Control”; CMV is a breath sequence for which spontaneous breaths are not possible between mandatory breaths because every patient trigger signal in the trigger window produces a machine cycled inspiration (i.e., a mandatory breath). Machine triggered mandatory breaths may be delivered at a preset rate. Therefore, in contrast to IMV, the mandatory breath frequency may be higher than the set frequency but never below it. In some pressure controlled modes on ventilators with an active exhalation valve, spontaneous breaths may occur during mandatory breaths, but the defining characteristic of CMV is that spontaneous breaths are not permitted between mandatory breaths. [3]

Terms replaced by VC-CMV
Terms replaced by PC-CMV

Intermittent mandatory ventilation (IMV)

IMV is a form of ventilation where the ventilator delivers mandatory breaths, but spontaneous breaths are possible between mandatory breaths. Mandatory breaths can be delivered at a set frequency (with spontaneous breaths occurring in between), or can be delivered whenever breath volume per minute falls below a set point. [4]

Terms replaced by VC-IMV
Terms replaced by PC-IMV

Continuous spontaneous ventilation

Continuous Spontaneous Ventilation CSV is a breath sequence for which all breaths are spontaneous. Terms no longer in use:

Targeting schemes

Mandatory breath

Mandatory Breath is a breath type during mechanical ventilation for which inspiration is machine triggered and/or machine cycled.

Terms no longer in use

Spontaneous breath

Spontaneous Breath s are a breath type for which inspiration is both patient triggered and patient cycled. Applies to assisted or unassisted breathing.

Assisted ventilation or breath

Assisted ventilation or assisted breath references ventilation (or breath) for which a machine provides some or all of the work of breathing.

Terms no longer in use

Patient triggered breath

Patient triggered breath — A breath that is initiated by the patient, independent of ventilator settings for frequency.

Terms no longer in use

Autotriggering

Autotriggering — Autotriggering is the unintended initiation of breath delivery by the ventilator, e.g., by an external disturbance such as movement of the breathing tube or an inappropriate trigger sensitivity setting.

Terms no longer in use

Non-standardized terminology

The following are terms that are included in modes of mechanical ventilation but are not yet included in the standardized nomenclature.

Related Research Articles

<span class="mw-page-title-main">Ventilator</span> Device that provides mechanical ventilation to the lungs

A ventilator is a type of breathing apparatus, a class of medical technology that provides mechanical ventilation by moving breathable air into and out of the lungs, to deliver breaths to a patient who is physically unable to breathe, or breathing insufficiently. Ventilators may be computerized microprocessor-controlled machines, but patients can also be ventilated with a simple, hand-operated bag valve mask. Ventilators are chiefly used in intensive-care medicine, home care, and emergency medicine and in anesthesiology.

<span class="mw-page-title-main">Mechanical ventilation</span> Method to mechanically assist or replace spontaneous breathing

Mechanical ventilation or assisted ventilation is the medical term for using a machine called a ventilator to fully or partially provide artificial ventilation. Mechanical ventilation helps move air into and out of the lungs, with the main goal of helping the delivery of oxygen and removal of carbon dioxide. Mechanical ventilation is used for many reasons, including to protect the airway due to mechanical or neurologic cause, to ensure adequate oxygenation, or to remove excess carbon dioxide from the lungs. Various healthcare providers are involved with the use of mechanical ventilation and people who require ventilators are typically monitored in an intensive care unit.

<span class="mw-page-title-main">Acute respiratory distress syndrome</span> Human disease

Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Symptoms include shortness of breath (dyspnea), rapid breathing (tachypnea), and bluish skin coloration (cyanosis). For those who survive, a decreased quality of life is common.

<span class="mw-page-title-main">Spirometry</span> Pulmonary function test

Spirometry is the most common of the pulmonary function tests (PFTs). It measures lung function, specifically the amount (volume) and/or speed (flow) of air that can be inhaled and exhaled. Spirometry is helpful in assessing breathing patterns that identify conditions such as asthma, pulmonary fibrosis, cystic fibrosis, and COPD. It is also helpful as part of a system of health surveillance, in which breathing patterns are measured over time.

<span class="mw-page-title-main">Respiratory arrest</span> Medical condition

Respiratory arrest is a serious medical condition caused by apnea or respiratory dysfunction severe enough that it will not sustain the body. Prolonged apnea refers to a patient who has stopped breathing for a long period of time. If the heart muscle contraction is intact, the condition is known as respiratory arrest. An abrupt stop of pulmonary gas exchange lasting for more than five minutes may permanently damage vital organs, especially the brain. Lack of oxygen to the brain causes loss of consciousness. Brain injury is likely if respiratory arrest goes untreated for more than three minutes, and death is almost certain if more than five minutes.

<span class="mw-page-title-main">Bag valve mask</span> Hand-held device to provide positive pressure ventilation

A bag valve mask (BVM), sometimes known by the proprietary name Ambu bag or generically as a manual resuscitator or "self-inflating bag", is a hand-held device commonly used to provide positive pressure ventilation to patients who are not breathing or not breathing adequately. The device is a required part of resuscitation kits for trained professionals in out-of-hospital settings (such as ambulance crews) and is also frequently used in hospitals as part of standard equipment found on a crash cart, in emergency rooms or other critical care settings. Underscoring the frequency and prominence of BVM use in the United States, the American Heart Association (AHA) Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiac Care recommend that "all healthcare providers should be familiar with the use of the bag-mask device." Manual resuscitators are also used within the hospital for temporary ventilation of patients dependent on mechanical ventilators when the mechanical ventilator needs to be examined for possible malfunction or when ventilator-dependent patients are transported within the hospital. Two principal types of manual resuscitators exist; one version is self-filling with air, although additional oxygen (O2) can be added but is not necessary for the device to function. The other principal type of manual resuscitator (flow-inflation) is heavily used in non-emergency applications in the operating room to ventilate patients during anesthesia induction and recovery.

<span class="mw-page-title-main">Dual-control modes of ventilation</span>

Dual-control modes of ventilation are auto-regulated pressure-controlled modes of mechanical ventilation with a user-selected tidal volume target. The ventilator adjusts the pressure limit of the next breath as necessary according to the previous breath's measured exhaled tidal volume. Peak airway pressure varies from breath to breath according to changes in the patient's airway resistance and lung compliance.

High-frequency ventilation is a type of mechanical ventilation which utilizes a respiratory rate greater than four times the normal value and very small tidal volumes. High frequency ventilation is thought to reduce ventilator-associated lung injury (VALI), especially in the context of ARDS and acute lung injury. This is commonly referred to as lung protective ventilation. There are different types of high-frequency ventilation. Each type has its own unique advantages and disadvantages. The types of HFV are characterized by the delivery system and the type of exhalation phase.

Pressure support ventilation (PSV), also known as pressure support, is a spontaneous mode of ventilation. The patient initiates every breath and the ventilator delivers support with the preset pressure value. With support from the ventilator, the patient also regulates their own respiratory rate and tidal volume.

Pressure control (PC) is a mode of mechanical ventilation alone and a variable within other modes of mechanical ventilation. Pressure control is used to regulate pressures applied during mechanical ventilation. Air delivered into the patients lungs (breaths) are currently regulated by Volume Control or Pressure Control. In pressure controlled breaths a tidal volume achieved is based on how much volume can be delivered before the pressure control limit is reached.

<span class="mw-page-title-main">Airway pressure release ventilation</span> Pressure control mode of mechanical ventilation

Airway pressure release ventilation (APRV) is a pressure control mode of mechanical ventilation that utilizes an inverse ratio ventilation strategy. APRV is an applied continuous positive airway pressure (CPAP) that at a set timed interval releases the applied pressure. Depending on the ventilator manufacturer, it may be referred to as BiVent. This is just as appropriate to use, since the only difference is that the term APRV is copyrighted.

Modes of mechanical ventilation are one of the most important aspects of the usage of mechanical ventilation. The mode refers to the method of inspiratory support. In general, mode selection is based on clinician familiarity and institutional preferences, since there is a paucity of evidence indicating that the mode affects clinical outcome. The most frequently used forms of volume-limited mechanical ventilation are intermittent mandatory ventilation (IMV) and continuous mandatory ventilation (CMV). There have been substantial changes in the nomenclature of mechanical ventilation over the years, but more recently it has become standardized by many respirology and pulmonology groups. Writing a mode is most proper in all capital letters with a dash between the control variable and the strategy.

Continuous mandatory ventilation (CMV) is a mode of mechanical ventilation in which breaths are delivered based on set variables. Still used in the operating room, in previous nomenclature, CMV referred to "controlled mechanical ventilation", a mode of ventilation characterized by a ventilator that makes no effort to sense patient breathing effort. In continuous mandatory ventilation, the ventilator can be triggered either by the patient or mechanically by the ventilator. The ventilator is set to deliver a breath according to parameters selected by the operator. "Controlled mechanical ventilation" is an outdated expansion for "CMV"; "continuous mandatory ventilation" is now accepted standard nomenclature for mechanical ventilation. CMV today can assist or control itself dynamically, depending on the transient presence or absence of spontaneous breathing effort. Thus, today's CMV would have been called ACV in older nomenclature, and the original form of CMV is a thing of the past. But despite continual technological improvement over the past half century, CMV may still be uncomfortable for the patient.

Continuous spontaneous ventilation is any mode of mechanical ventilation where every breath is spontaneous.

Intermittent Mandatory Ventilation (IMV) refers to any mode of mechanical ventilation where a regular series of breaths are scheduled but the ventilator senses patient effort and reschedules mandatory breaths based on the calculated need of the patient. Similar to continuous mandatory ventilation in parameters set for the patients pressures and volumes but distinct in its ability to support a patient by either supporting their own effort or providing support when patient effort is not sensed. IMV is frequently paired with additional strategies to improve weaning from ventilator support or to improve cardiovascular stability in patients who may need full life support.

Inverse ratio ventilation (IRV) is not necessarily a mode of mechanical ventilation though it may be referred to as such. IRV is a strategy of ventilating the lungs in such a way that the amount of time the lungs are in inhalation is greater than the amount of time they are in exhalation, allowing for a constant inflation of the lungs, ensuring they remain "recruited". The primary goal for IRV is improved oxygenation by forcing inspiratory time to be greater than expiratory time increasing the mean airway pressure and potentially improving oxygenation. Normal I:E ratio is 5:6, so forcing the I:E to be 2:1, 3:1, 4:1, is the source of the term for the strategy.

<span class="mw-page-title-main">SensorMedics high-frequency oscillatory ventilator</span>

The SensorMedics High-Frequency Oscillatory Ventilator is a patented high-frequency mechanical ventilator designed and manufactured by SensorMedics Corp. of Yorba Linda, California. After a series of acquisitions, Vyaire Medical, Inc. marketed the product as 3100A/B HFOV Ventilators. Model 3100 received premarket approval from the United States Food and Drug Administration (FDA) in 1991 for treatment of all forms of respiratory failure in neonatal patients. In 1995, it received pre-market approved for Pediatric Application with no upper weight limit for treating selected patients failing on conventional ventilation.

Dynamic hyperinflation is a phenomenon that occurs when a new breath begins before the lung has reached the static equilibrium volume. In simpler terms, this means that a new breath starts before the usual amount of air has been breathed out, leading to a build-up of air in the lungs, and causing breathing in and out to take place when the lung is nearly full.

<span class="mw-page-title-main">Glossary of breathing apparatus terminology</span> Definitions of technical terms used in connection with breathing apparatus

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.

References

  1. Chatburn RL, Volsko TA, Hazy J, Harris LN, Sanders S (2011). "Determining the Basis for a Taxonomy of Mechanical Ventilation". Respir Care. 57 (4): 514–24. doi:10.4187/respcare.01327. PMID   22004898.
  2. "Preferred Nomenclature for Mechanical Ventilation for Manuscripts Submitted to RESPIRATORY CARE". Respiratory Care Journal. Retrieved 9 June 2012.
  3. du Toit PW, Ungerer MJ (1977). "[Nomenclature in respiratory failure, mechanical ventilation and related technics]". S Afr Med J. 52 (26): 1030–1. PMID   609974.
  4. Donn SM (2009). "Neonatal ventilators: how do they differ?". J Perinatol. 29 (Suppl 2): S73-8. doi:10.1038/jp.2009.23. PMID   19399015.
  5. Personal communication from Prof. Chatburn upon my request, because ASV was formerly classified as "PC-IMVo,o".
  6. Chatburn, Mechanical Ventilation, in Volsko, Chatburn, El-Khatib: Equipment for Respiratory Care, Jones & Bartlett, 2016.
  7. Chatburn: Mechanical Ventilation. In Volsko Chatburn El-Khatib: Equipment for Respiratory Care. Jones & Bartlett, 2016.