Dynamic tidal power

Last updated
Co-inventor Kees Hulsbergen presenting the principles of DTP at Tsinghua University in Beijing, in February 2010 Hulsbergen presents DTP at tsinghua.jpg
Co-inventor Kees Hulsbergen presenting the principles of DTP at Tsinghua University in Beijing, in February 2010

Dynamic tidal power or DTP is an untried but promising technology for tidal power generation. It would involve creating a long dam-like structure perpendicular to the coast, with the option for a coast-parallel barrier at the far end, forming a large 'T' shape. This long T-dam would interfere with coast-parallel tidal wave hydrodynamics, creating water level differences on opposite sides of the barrier which drive a series of bi-directional turbines installed in the dam. Oscillating tidal waves which run along the coasts of continental shelves, containing powerful hydraulic currents, are common in e.g. China, Korea, and the UK. [1] [2] [3] [4]

Contents

The concept was invented and patented in 1997 by Dutch coastal engineers Kees Hulsbergen and Rob Steijn. [5]

A short video explaining the concept was completed in October 2013 and made available in English on YouTube [6] and in Chinese on Youku. [7]

Description

Top-down view of a DTP dam. Blue and dark red colors indicate low and high tides, respectively. DTP T dam top-down view.jpg
Top-down view of a DTP dam. Blue and dark red colors indicate low and high tides, respectively.

A DTP dam is a long barrier of 30 km or more which is built perpendicular to the coast, running straight out into the sea, without enclosing an area. Along many coasts of the world, the main tidal movement runs parallel to the coastline: the entire mass of the ocean water accelerates in one direction, and later in the day back the other way. A DTP dam is long enough to exert an influence on the horizontal tidal movement, which generates a water level differential (head) over both sides of the dam. The head can be converted into power, using a long series of conventional low-head turbines installed in the dam. [8]

Maximum head difference

Estimates of the maximum head difference that can be obtained from a variety of dam configurations are based on numerical and analytical models. [1] [9] Field information from measured water level differences across natural barriers confirms the creation of significant head. The (maximum) head difference is more than what would be expected in stationary flow situations (such as rivers). The maximum head difference reaches values up to a few meters, which can be attributed to the non-permanent character of the tidal flow (acceleration). [10]

Benefits

High power output

It is estimated that some of the largest dams could accommodate over 15 GW (15,000 MW) of installed capacity. [9] A DTP dam with 8 GW installed capacity and a capacity factor of about 30%, could generate about 21 TWh annually. To put this number in perspective, an average European person consumes about 6800 kWh per year, so one DTP dam could supply energy for about 3 million Europeans. [11]

Stable power

The generation of tidal power is highly predictable due to the deterministic nature of tides, and independent of weather conditions or climate change. Power output varies with the tidal phase (ebb & flow, neap & spring) but the shorter terms effects can be avoided by combining two dams, placed at certain distance from each other (in the order of 150–250 km), each generating maximum electricity output when the other is generating minimal output. This provides a predictable and fairly stable base generation to the energy grid.

High availability

Dynamic tidal power does not require a very high natural tidal range, but instead an open coast where the tidal propagation is alongshore. Such tidal conditions can be found in many places around the world, which means that the theoretical potential of DTP is very high. Along the Chinese coast for example, the total amount of available power is estimated at 80–150 GW.

Potential for combined functions

The long dam can be combined with various other functions, such as coastal protection, deep sea – and LNG ports, aquaculture facilities, controlled land reclamation and connections between islands and the mainland. These additional functions can share the investment costs, thus helping to lower the price per kWh.

Challenges

A major challenge is that the proof of DTP functioning can only be demonstrated by putting it in practice. Testing the concept of DTP at a small scale within a demonstration project, would not be effective, since almost no power would be yielded. Not even at a dam length of 1 km (0.62 mi) or so, because the DTP principle is such that the power generation capacity increases as the square of the dam length increases (both head and volume increase in a more or less linear manner for increased dam length, resulting in a quadratic increase in power generation). Economic viability is estimated to be reached for dam lengths of about 30 km (19 mi). [12]

Demonstration project

A demonstration project under consideration in China would not involve construction of a dam, but instead feature a newly cut channel through a long peninsula with a narrow isthmus (neck). The channel would feature a head of about 1–2 metres (3.3–6.6 ft), and be fitted with low-head bi-directional turbines, similar to the type which would be used for full-scale DTP. [13]

Status of technological development

No DTP dam has ever been built, although all of the technologies required to build a DTP dam are available. Various mathematical and physical models have been conducted to model and predict the 'head' or water level differential over a dynamic tidal power dam. The interaction between tides and long dams has been observed and recorded in large engineering projects, such as the Delta Works and the Afsluitdijk in the Netherlands. The interaction of tidal currents with natural peninsulas is also well-known, and such data is used to calibrate numerical models of tides. Formulas for the calculation of added mass were applied to develop an analytical model of DTP. Observed water level differentials closely match current analytical and numerical models. [1] Water level differential generated over a DTP dam can now be predicted with a useful degree of accuracy.

Some of the key elements required include:

Recent progress

In December 2011 the Dutch Ministry of Economy, Agriculture and Innovation (EL&I) awarded a grant funding subsidy to the POWER consortium, led by Strukton and managed by ARCADIS. The maximum grant is about 930.000 euro, which is matched by a similar amount of co-financing from the consortium partners. The POWER group conducts a detailed feasibility study on the development of Dynamic Tidal Power (DTP) in China in a three-year programme jointly conducted with Chinese government institutes. [14] The commitments of the programme to achieve by 2015, registered under the UN Sustainable Energy for All initiative include: [15]

In August 2012, China's National Energy Administration formed a consortium of companies and research institutes, led by the Hydropower and Water Resources Planning and Design General Institute (also known as China Renewable Energy Engineering Institute), to investigate DTP. A bilateral agreement on DTP cooperation was signed between China and the Netherlands on September 27, 2012. Following technical exchange to verify the principles, a modelling study was conducted to select sites. In October 2013, a more in-depth economic analysis study was started to better understand the economic costs and benefits of DTP. [16]

A short video explaining the concept was completed in October 2013 and made available in English on YouTube [6] and in Chinese on Youku. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Hydropower</span> Power generation via movement of water

Hydropower, also known as water power or water energy, is the use of falling or fast-running water to produce electricity or to power machines. This is achieved by converting the gravitational potential or kinetic energy of a water source to produce power. Hydropower is a method of sustainable energy production. Hydropower is now used principally for hydroelectric power generation, and is also applied as one half of an energy storage system known as pumped-storage hydroelectricity.

<span class="mw-page-title-main">Tide</span> Rise and fall of the sea level under astronomical gravitational influences

Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and are also caused by the Earth and Moon orbiting one another.

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Tidal power</span> Technology to convert the energy from tides into useful forms of power

Tidal power or tidal energy is harnessed by converting energy from tides into useful forms of power, mainly electricity using various methods.

<span class="mw-page-title-main">Hydroelectricity</span> Electricity generated by hydropower

Hydroelectricity, or hydroelectric power, is electricity generated from hydropower. Hydropower supplies 15% of the world's electricity, almost 4,210 TWh in 2023, which is more than all other renewable sources combined and also more than nuclear power. Hydropower can provide large amounts of low-carbon electricity on demand, making it a key element for creating secure and clean electricity supply systems. A hydroelectric power station that has a dam and reservoir is a flexible source, since the amount of electricity produced can be increased or decreased in seconds or minutes in response to varying electricity demand. Once a hydroelectric complex is constructed, it produces no direct waste, and almost always emits considerably less greenhouse gas than fossil fuel-powered energy plants. However, when constructed in lowland rainforest areas, where part of the forest is inundated, substantial amounts of greenhouse gases may be emitted.

<span class="mw-page-title-main">Cobscook Bay</span> Bay in Maine, United States

Cobscook Bay is located in Washington County in the state of Maine. It opens into Passamaquoddy Bay, within the Bay of Fundy. Cobscook Bay is immediately south of the island city of Eastport, the main island of which straddles the two bays. In the 1930s, Cobscook Bay was part of the aborted Passamaquoddy Bay Tidal Power Project to generate electricity from its large tidal range.

<span class="mw-page-title-main">Severn Barrage</span> Conceptual dam between England and Wales

The Severn Barrage is any of a range of ideas for building a barrage from the English coast to the Welsh coast over the Severn tidal estuary. Ideas for damming or barraging the Severn estuary have existed since the 19th century. The building of such a barrage would constitute an engineering project comparable with some of the world's biggest. The purposes of such a project have typically been one or several of: transport links, flood protection, harbour creation, or tidal power generation. In recent decades it is the latter that has grown to be the primary focus for barrage ideas, and the others are now seen as useful side-effects. Following the Severn Tidal Power Feasibility Study (2008–10), the British government concluded that there was no strategic case for building a barrage but to continue to investigate emerging technologies. In June 2013 the Energy and Climate Change Select Committee published its findings after an eight-month study of the arguments for and against the Barrage. MPs said the case for the barrage was unproven. They were not convinced the economic case was strong enough and said the developer, Hafren Power, had failed to answer serious environmental and economic concerns.

Marine currents can carry large amounts of water, largely driven by the tides, which are a consequence of the gravitational effects of the planetary motion of the Earth, the Moon and the Sun. Augmented flow velocities can be found where the underwater topography in straits between islands and the mainland or in shallows around headlands plays a major role in enhancing the flow velocities, resulting in appreciable kinetic energy. The Sun acts as the primary driving force, causing winds and temperature differences. Because there are only small fluctuations in current speed and stream location with minimal changes in direction, ocean currents may be suitable locations for deploying energy extraction devices such as turbines. Other effects such as regional differences in temperature and salinity and the Coriolis effect due to the rotation of the earth are also major influences. The kinetic energy of marine currents can be converted in much the same way that a wind turbine extracts energy from the wind, using various types of open-flow rotors.

<span class="mw-page-title-main">Run-of-the-river hydroelectricity</span> Hydroelectric power station

Run-of-river hydroelectricity (ROR) or run-of-the-river hydroelectricity is a type of hydroelectric generation plant whereby little or no water storage is provided. Run-of-the-river power plants may have no water storage at all or a limited amount of storage, in which case the storage reservoir is referred to as pondage. A plant without pondage is subject to seasonal river flows, so the plant will operate as an intermittent energy source. Conventional hydro uses reservoirs, which regulate water for flood control, dispatchable electrical power, and the provision of fresh water for agriculture.

Marine Current Turbines Ltd (MCT), was a United Kingdom-based company that developed tidal stream generators, most notably the 1.2 MW SeaGen turbine. The company was bought by the German automation company, Siemens in 2012, who later sold the company to Atlantis Resources in 2015.

<span class="mw-page-title-main">Ocean power in New Zealand</span>

New Zealand has large ocean energy resources but does not yet generate any power from them. TVNZ reported in 2007 that over 20 wave and tidal power projects are currently under development. However, not a lot of public information is available about these projects. The Aotearoa Wave and Tidal Energy Association was established in 2006 to "promote the uptake of marine energy in New Zealand". According to their 10 February 2008 newsletter, they have 59 members. However, the association doesn't list its members.

Low-head hydro power refers to the development of hydroelectric power where the head is typically less than 20 metres, although precise definitions vary. Head is the vertical height measured between the hydro intake water level and the water level at the point of discharge. Using only a low head drop in a river or tidal flows to create electricity may provide a renewable energy source that will have a minimal impact on the environment. Since the generated power is a function of the head these systems are typically classed as small-scale hydropower, which have an installed capacity of less than 5MW.

<span class="mw-page-title-main">Marine energy</span> Energy available from oceans

Marine energy or marine power refers to the energy carried by ocean waves, tides, salinity, and ocean temperature differences. The movement of water in the world's oceans creates a vast store of kinetic energy, or energy in motion. Some of this energy can be harnessed to generate electricity to power homes, transport and industries.

<span class="mw-page-title-main">Tidal farm</span> Group of tidal stream generators used for production of electric power

A tidal farm is a group of tidal stream generators used for production of electric power. The potential of tidal farms is limited by the number of suitable sites across the globe as there are niche requirements to make a tidal farm cost effective and environmentally conscious.

<span class="mw-page-title-main">Tidal stream generator</span> Type of tidal power generation technology

A tidal stream generator, often referred to as a tidal energy converter (TEC), is a machine that extracts energy from moving masses of water, in particular tides, although the term is often used in reference to machines designed to extract energy from the run of a river or tidal estuarine sites. Certain types of these machines function very much like underwater wind turbines and are thus often referred to as tidal turbines. They were first conceived in the 1970s during the oil crisis.

<span class="mw-page-title-main">Tidal barrage</span> Dam-like structure

A tidal barrage is a dam-like structure used to capture the energy from masses of water moving in and out of a bay or river due to tidal forces.

Wreck Cove is the largest hydroelectric system in Nova Scotia with a generating capacity of 215.8 MW. Constructed from 1975 to 1978, south of the Cape Breton Highlands National Park, Wreck Cove collects drainage water from 216 square kilometres (83 sq mi) of the Cape Breton Highlands plateau to generate renewable electricity. It consists of two generating stations: the Gisborne Generating Station, with an installed capacity of 3.5 MW, and the Wreck Cove Generating Station, with an installed capacity of 212 MW, producing on average 318 GWh annually—enough energy to power about 30,000 homes.

<span class="mw-page-title-main">Water wall turbine</span> Type of water turbine

The water wall turbine is a water turbine designed to utilize hydrostatic pressure differences for low head hydropower generation. It supports bidirectional inflow operation using radial blades that rotate around a horizontal axis. The water wall turbine is suitable for energy extraction from tidal and freshwater currents. For tidal power installations, the turbine operates in both directions as the tide ebbs and flows.

<span class="mw-page-title-main">Renewable energy in Wales</span> Overview of renewable energy in Wales

In 2019, Wales generated 27% of its electricity consumption as renewable electricity, an increase from 19% in 2014. The Welsh Government set a target of 70% by 2030. In 2019, Wales was a net exporter of electricity. It produced 27.9 TWh of electricity while only consuming 14.7 TWh. The natural resource base for renewable energy is high by European standards, with the core sources being wind, wave, and tidal. Wales has a long history of renewable energy: in the 1880s, the first house in Wales with electric lighting powered from its own hydro-electric power station was in Plas Tan y Bwlch, Gwynedd. In 1963, the Ffestiniog Power Station was constructed, providing a large scale generation of hydroelectricity, and in November 1973, the Centre for Alternative Technology was opened in Machynlleth.

Tidal power contributes a very small proportion of the electricity generation in the United Kingdom, but it could provide a meaningful amount of predictable renewable energy in future.

References

  1. 1 2 3 K. Hulsbergen; R. Steijn; G. van Banning; G. Klopman (2008). Dynamic Tidal Power – A new approach to exploit tides. 2nd International Conference on Ocean Energy (PDF). Brest, France.
  2. Marieke Aarden (28 November 1998). "Getijdenkracht lift mee naar Schiphol in zee" [Tidal power gets a free ride to Schiphol in the sea] (in Dutch). Volkskrant . Retrieved 2010-04-15.
  3. Rijkert Knoppers (16 January 1999). "Dertig kilometer electriciteit" [Thirty kilometers of electricity] (in Dutch). NRC Handelsblad. Archived from the original on 8 July 2012. Retrieved 2010-04-15.
  4. Bas Keijts (1998). "Meer vermogen met eb en vloed" [More power from low and high tides]. Land en Water (in Dutch). Vol. 12.
  5. "Espacenet - Bibliographic data". worldwide.espacenet.com. Retrieved 2018-05-18.
  6. 1 2 POWER group (14 October 2013). "Dynamic Tidal Power in China (Full HD)". YouTube. Archived from the original on 2021-12-21.
  7. 1 2 POWER group (11 November 2013). 中国 - 荷兰动态潮汐能研发合作宣传片 (in Chinese). Youku.
  8. "Dynamic Tidal Power". World News. Retrieved 2018-05-18.
  9. 1 2 Chiang Mei (3 March 2012). "Note on tidal diffraction by a coastal barrier (full article on POWER website)". Archived from the original on 29 October 2013. Retrieved 8 May 2012.
  10. Dai, Peng; Zhang, Ji-sheng; Zheng, Jin-hai; Hulsbergen, Kees; van Banning, Gijs; Adema, Jeroen; Tang, Zi-xuan (2018-07-01). "Numerical study of hydrodynamic mechanism of dynamic tidal power". Water Science and Engineering. 11 (3): 220–228. doi: 10.1016/j.wse.2018.09.004 . ISSN   1674-2370. S2CID   135323059.
  11. "Nuclear Power in France | French Nuclear Energy - World Nuclear Association". world-nuclear.org. Archived from the original on 2011-07-19. Retrieved 2018-05-18.
  12. Agarwal, Umesh; Jain, Naveen; Kumawat, Manoj; Agarwal, Umesh; Jain, Naveen; Kumawat, Manoj. "Ocean Energy: An Endless Source of Renewable Energy". www.igi-global.com. doi:10.4018/978-1-6684-4012-4.ch006. S2CID   244359371 . Retrieved 2023-02-08.[ permanent dead link ]
  13. "How does tidal power work?". Solar Reviews. Retrieved 2023-02-08.[ permanent dead link ]
  14. "home - Dynamic Tidal Power". Dynamic Tidal Power. Retrieved 2018-05-18.
  15. "Sustainable Energy for All (SEforALL) |". sustainableenergyforall.org. Retrieved 2018-05-18.
  16. "Responding to Climate Change, 2012". Archived from the original on 2013-04-15.