EPHX1

Last updated
EPHX1
Identifiers
Aliases EPHX1 , EPHX, EPOX, HYL1, MEH, epoxide hydrolase 1
External IDs OMIM: 132810 MGI: 95405 HomoloGene: 94 GeneCards: EPHX1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001291163
NM_000120
NM_001136018

NM_010145
NM_001312918

RefSeq (protein)

NP_001299847
NP_034275

Location (UCSC) Chr 1: 225.81 – 225.85 Mb Chr 1: 180.8 – 180.85 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Epoxide hydrolase 1 is an enzyme encoded by the EPHX1 gene in humans. [5] [6]

Function

Epoxide hydrolase plays an important role in both the activation and detoxification of exogenous chemicals such as polycyclic aromatic hydrocarbons. [6]

Discovery

Microsomal epoxide hydrolase 1 (EPHX1) was first isolated by Watabe and Kanehira from rabbit liver [7] and later also purified from human liver and characterized. [8] EPHX1 belongs to the family of α/β hydrolases [9] and converts epoxides to diols. [10]

Tissue distribution

EPHX1 protein can be found predominantly in the membrane fraction of the endoplasmic reticulum of eucaryotic cells. Its expression in mammals is generally the highest in the liver, followed by adrenal gland, lung, kidney, and intestine. [11] It was found also in bronchial epithelial cells [12] and upper gastrointestinal tract. [13] EPHX1 expression is individually variable among humans [14] and it can be modestly induced by chemicals as phenobarbital, β-naphtoflavone, benzanthracene, trans-stilbene oxide, etc. [15]

Gene structure and ontology

Human EPHX1 orthologues were found in 127 organisms. Human microsomal epoxide hydrolase is coded by EPHX1 gene located on chromosome 1 (1q42.12). [16] [17] [18] Three transcription variants differing in the 5´-untranslated region have been identified with length of 455 amino acids.

Function

Conversion of epoxides to trans-dihydrodiols presents prototypical EPHX1 reaction. [10] EPHX1 has broad substrate specificity. [19] [20] EPHX1 detoxifies low molecular weight chemicals, e.g., butadiene, benzene, styrene, etc., [21] but more complex compounds as polycyclic aromatic hydrocarbons are rather bioactivated to genotoxic species. [22] [23]

EPHX1 mediates the sodium-dependent transport of bile acids into hepatocytes. [24] Androstene oxide and epoxyestratrienol have been shown as endogenous EPHX1 substrates. [25] [26] EPHX1 also metabolizes endocannabinoid 2-arachidonoylglycerol to arachidonic acid [27] and may play an important role in the endocannabinoid signaling pathway.

Clinical significance

Mutations in EPHX1 have been linked with preeclampsia, [28] [29] elevated blood levels of bile salts (i.e. hypercholanemia), [30] Fetal hydantoin syndrome, [31] and diphenylhydantoin toxicity. Functional single nucleotide polymorphisms (SNPs) in EPHX1 have been found and frequently studied. [32] Two SNPs - Y113H (rs1051740, T337C) and H139R (rs2234922, A416G) – seemed to influence EPHX1 activity in vitro [33] and their combination was used for deduction of EPHX1 activity. [34] However, their functional effect was not confirmed in human liver microsomes. [35]

Due to the EPHX1 role in metabolism of procarcinogens and existence of gene variations with functional effect a number of association studies has been conducted. Significant associations between EPHX1 SNPs and risk of lung, upper aerodigestive tract, breast, and ovarian cancers have been observed in various populations. [36] [37] [38] [39] [40] Meta-analyses confirmed associations of rs1051740 and rs2234922 SNPs with the risk of lung cancer. [41] [42] [43] Meta-analyses reporting no association of these SNPs with esophageal and hepatocellular cancer risk have been reported as well [44] [45] ). Genetically predicted low EPHX1 activity was associated with increased risk of developing tobacco-related cancer in smokers from 47089 Danish individuals . [46] Recent meta-analysis comprising 8,259 patients with chronic obstructive pulmonary disease (COPD) and 42,883 controls reported that the predicted slow activity EPHX1 phenotype is a significant risk factor for COPD in Caucasian, but not in Asian population. [47] Role of EPHX1 expression in pathogenesis of neurodegeneration as Alzheimer´s disease, [48] methamphetamine-induced drug dependence, [49] and cerebral metabolism of epoxyeicosatrienoic acids [50] was suggested. Modulation of metabolism of epoxyeicosatrienoic acids by EPHX1 may interfere with, e.g., signal transmission of neurons, vasodilation, cardiovascular homeostasis, and inflammation. Transformation of the current knowledge about EPHX1 into clinical applications is, however, limited by the lack of crystal structure of the enzyme and by the complex relations between its genotype and phenotype.

Notes

Related Research Articles

<span class="mw-page-title-main">CYP2E1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2E1 is a member of the cytochrome P450 mixed-function oxidase system, which is involved in the metabolism of xenobiotics in the body. This class of enzymes is divided up into a number of subcategories, including CYP1, CYP2, and CYP3, which as a group are largely responsible for the breakdown of foreign compounds in mammals.

<span class="mw-page-title-main">Epoxide hydrolase</span> Enzyme that metabolizes compounds containing epoxides

Epoxide hydrolases (EHs), also known as epoxide hydratases, are enzymes that metabolize compounds that contain an epoxide residue; they convert this residue to two hydroxyl residues through an epoxide hydrolysis reaction to form diol products. Several enzymes possess EH activity. Microsomal epoxide hydrolase, soluble epoxide hydrolase, and the more recently discovered but not as yet well defined functionally, epoxide hydrolase 3 (EH3) and epoxide hydrolase 4 (EH4) are structurally closely related isozymes. Other enzymes with epoxide hydrolase activity include leukotriene A4 hydrolase, Cholesterol-5,6-oxide hydrolase, MEST (gene) (Peg1/MEST), and Hepoxilin-epoxide hydrolase. The hydrolases are distinguished from each other by their substrate preferences and, directly related to this, their functions.

<span class="mw-page-title-main">CYP2A6</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2A6 is a member of the cytochrome P450 mixed-function oxidase system, which is involved in the metabolism of xenobiotics in the body. CYP2A6 is the primary enzyme responsible for the oxidation of nicotine and cotinine. It is also involved in the metabolism of several pharmaceuticals, carcinogens, and a number of coumarin-type alkaloids. CYP2A6 is the only enzyme in the human body that appreciably catalyzes the 7-hydroxylation of coumarin, such that the formation of the product of this reaction, 7-hydroxycoumarin, is used as a probe for CYP2A6 activity.

<span class="mw-page-title-main">CYP1A2</span> Enzyme in the human body

Cytochrome P450 1A2, a member of the cytochrome P450 mixed-function oxidase system, is involved in the metabolism of xenobiotics in the human body. In humans, the CYP1A2 enzyme is encoded by the CYP1A2 gene.

The epoxyeicosatrienoic acids or EETs are signaling molecules formed within various types of cells by the metabolism of arachidonic acid by a specific subset of cytochrome P450 enzymes termed cytochrome P450 epoxygenases. These nonclassic eicosanoids are generally short-lived, being rapidly converted from epoxides to less active or inactive dihydroxy-eicosatrienoic acids (diHETrEs) by a widely distributed cellular enzyme, soluble epoxide hydrolase (sEH), also termed epoxide hydrolase 2. The EETs consequently function as transiently acting, short-range hormones; that is, they work locally to regulate the function of the cells that produce them or of nearby cells. The EETs have been most studied in animal models where they show the ability to lower blood pressure possibly by a) stimulating arterial vasorelaxation and b) inhibiting the kidney's retention of salts and water to decrease intravascular blood volume. In these models, EETs prevent arterial occlusive diseases such as heart attacks and brain strokes not only by their anti-hypertension action but possibly also by their anti-inflammatory effects on blood vessels, their inhibition of platelet activation and thereby blood clotting, and/or their promotion of pro-fibrinolytic removal of blood clots. With respect to their effects on the heart, the EETs are often termed cardio-protective. Beyond these cardiovascular actions that may prevent various cardiovascular diseases, studies have implicated the EETs in the pathological growth of certain types of cancer and in the physiological and possibly pathological perception of neuropathic pain. While studies to date imply that the EETs, EET-forming epoxygenases, and EET-inactivating sEH can be manipulated to control a wide range of human diseases, clinical studies have yet to prove this. Determination of the role of the EETS in human diseases is made particularly difficult because of the large number of EET-forming epoxygenases, large number of epoxygenase substrates other than arachidonic acid, and the large number of activities, some of which may be pathological or injurious, that the EETs possess.

<span class="mw-page-title-main">N-acetyltransferase</span> Class of enzymes

N-acetyltransferase (NAT) is an enzyme that catalyzes the transfer of acetyl groups from acetyl-CoA to arylamines, arylhydroxylamines and arylhydrazines. They have wide specificity for aromatic amines, particularly serotonin, and can also catalyze acetyl transfer between arylamines without CoA. N-acetyltransferases are cytosolic enzymes found in the liver and many tissues of most mammalian species, except the dog and fox, which cannot acetylate xenobiotics.

<span class="mw-page-title-main">CYP1A1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450, family 1, subfamily A, polypeptide 1 is a protein that in humans is encoded by the CYP1A1 gene. The protein is a member of the cytochrome P450 superfamily of enzymes.

<span class="mw-page-title-main">UGT2B7</span> Protein-coding gene in the species Homo sapiens

UGT2B7 (UDP-Glucuronosyltransferase-2B7) is a phase II metabolism isoenzyme found to be active in the liver, kidneys, epithelial cells of the lower gastrointestinal tract and also has been reported in the brain. In humans, UDP-Glucuronosyltransferase-2B7 is encoded by the UGT2B7 gene.

In enzymology, a hepoxilin-epoxide hydrolase is an enzyme that catalyzes the conversion of the epoxyalcohol metabolites arachidonic acid, hepoxilin A3 and hepoxilin B3 to their tri-hydroxyl products, trioxolin A3 and trioxilin B3, respectively. These reactions in general inactivate the two biologically active hepoxilins.

<span class="mw-page-title-main">Leukotriene-A4 hydrolase</span>

Leukotriene A4 hydrolase, also known as LTA4H is a human gene. The protein encoded by this gene is a bifunctional enzyme which converts leukotriene A4 to leukotriene B4 and acts as an aminopeptidase.

<span class="mw-page-title-main">Microsomal epoxide hydrolase</span>

In enzymology, a microsomal epoxide hydrolase (mEH) is an enzyme that catalyzes the hydrolysis reaction between an epoxide and water to form a diol.

<span class="mw-page-title-main">Carboxylesterase 1</span> Protein-coding gene in the species Homo sapiens

Liver carboxylesterase 1 also known as carboxylesterase 1 is an enzyme that in humans is encoded by the CES1 gene. The protein is also historically known as serine esterase 1 (SES1), monocyte esterase and cholesterol ester hydrolase (CEH). Three transcript variants encoding three different isoforms have been found for this gene. The various protein products from isoform a, b and c range in size from 568, 567 and 566 amino acids long, respectively.

<span class="mw-page-title-main">CYP4A11</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4A11 is a protein that in humans is codified by the CYP4A11 gene.

<span class="mw-page-title-main">Microsomal glutathione S-transferase 1</span> Protein-coding gene in the species Homo sapiens

Microsomal glutathione S-transferase 1 is an enzyme that in humans is encoded by the MGST1 gene.

Epoxygenases are a set of membrane-bound, heme-containing cytochrome P450 enzymes that metabolize polyunsaturated fatty acids to epoxide products that have a range of biological activities. The most thoroughly studied substrate of the CYP epoxylgenases is arachidonic acid. This polyunsaturated fatty acid is metabolized by cyclooxygenases to various prostaglandin, thromboxane, and prostacyclin metabolites in what has been termed the first pathway of eicosanoid production; it is also metabolized by various lipoxygenases to hydroxyeicosatetraenoic acids and leukotrienes in what has been termed the second pathway of eicosanoid production. The metabolism of arachidonic acid to epoxyeicosatrienoic acids by the CYP epoxygenases has been termed the third pathway of eicosanoid metabolism. Like the first two pathways of eicosanoid production, this third pathway acts as a signaling pathway wherein a set of enzymes metabolize arachidonic acid to a set of products that act as secondary signals to work in activating their parent or nearby cells and thereby orchestrate functional responses. However, none of these three pathways is limited to metabolizing arachidonic acid to eicosanoids. Rather, they also metabolize other polyunsaturated fatty acids to products that are structurally analogous to the eicosanoids but often have different bioactivity profiles. This is particularly true for the CYP epoxygenases which in general act on a broader range of polyunsaturated fatty acids to form a broader range of metabolites than the first and second pathways of eicosanoid production. Furthermore, the latter pathways form metabolites many of which act on cells by binding with and thereby activating specific and well-characterized receptor proteins; no such receptors have been fully characterized for the epoxide metabolites. Finally, there are relatively few metabolite-forming lipoxygenases and cyclooxygenases in the first and second pathways and these oxygenase enzymes share similarity between humans and other mammalian animal models. The third pathway consists of a large number of metabolite-forming CYP epoxygenases and the human epoxygenases have important differences from those of animal models. Partly because of these differences, it has been difficult to define clear roles for the epoxygenase-epoxide pathways in human physiology and pathology.

<span class="mw-page-title-main">CYP2A7</span> Protein-coding gene in the species Homo sapiens

CYP2A7 is a protein that in humans is encoded by the CYP2A7 gene.

<span class="mw-page-title-main">Epoxide hydrolase 2</span> Protein-coding gene in the species Homo sapiens

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that in humans is encoded by the EPHX2 gene. sEH is a member of the epoxide hydrolase family. This enzyme, found in both the cytosol and peroxisomes, binds to specific epoxides and converts them to the corresponding diols. A different region of this protein also has lipid-phosphate phosphatase activity. Mutations in the EPHX2 gene have been associated with familial hypercholesterolemia.

Cholesterol-5,6-oxide hydrolase (EC 3.3.2.11, cholesterol-epoxide hydrolase, ChEH) is an enzyme with systematic name 5,6alpha-epoxy-5alpha-cholestan-3beta-ol hydrolase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Epoxyeicosatetraenoic acid</span> Chemical compound

Epoxyeicosatetraenoic acids are a set of biologically active epoxides that various cell types make by metabolizing the omega 3 fatty acid, eicosapentaenoic acid (EPA), with certain cytochrome P450 epoxygenases. These epoxygenases can metabolize EPA to as many as 10 epoxides that differ in the site and/or stereoisomer of the epoxide formed; however, the formed EEQs, while differing in potency, often have similar bioactivities and are commonly considered together.

<span class="mw-page-title-main">Epoxide hydrolase 3</span> Protein-coding gene in the species Homo sapiens

Epoxide hydrolase 3 is a protein that in humans is encoded by the EPHX3 gene. It is the third defined isozyme in a set of epoxide hydrolase isozymes, the epoxide hydrolases. This set includes the Microsomal epoxide hydrolase ; the epoxide hydrolase 2 ; and the far less well defined enzymatically, epoxide hydrolase 4. All four enzyme contain an Alpha/beta hydrolase fold suggesting that they have Hydrolysis activity. EH1, EH2, and EH3 have been shown to have such activity in that they add water to epoxides of unsaturated fatty acids to form vicinal cis products; the activity of EH4 has not been reported. The former three EH's differ in subcellular location, tissue expression patterns, substrate preferences, and thereby functions. These functions include limiting the biologically actions of certain fatty acid epoxides, increasing the toxicity of other fatty acid epoxides, and contributing to the metabolism of drugs and other xenobiotics.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000143819 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000038776 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hartsfield JK, Sutcliffe MJ, Everett ET, Hassett C, Omiecinski CJ, Saari JA (1998). "Assignment1 of microsomal epoxide hydrolase (EPHX1) to human chromosome 1q42.1 by in situ hybridization". Cytogenet. Cell Genet. 83 (1–2): 44–5. doi:10.1159/000015164. PMID   9925921. S2CID   42482323.
  6. 1 2 "Entrez Gene: EPHX1 epoxide hydrolase 1, microsomal (xenobiotic)".
  7. Watabe T, Kanehira S (1970). "Solubilization of epoxide hydrolase from liver microsomes". Chem Pharm Bull. 18 (6): 1295–1296. doi: 10.1248/cpb.18.1295 . PMID   5465293.
  8. Oesch F (1974). "Purification and specificity of a human microsomal epoxide hydratase". Biochem. J. 139 (1): 77–88. doi:10.1042/bj1390077. PMC   1166253 . PMID   4463951.
  9. Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J (1992). "The alpha/beta hydrolase fold" (PDF). Protein Eng. 5 (3): 197–211. doi:10.1093/protein/5.3.197. hdl: 11370/2d4c057d-1a67-437d-ad10-701f7a60f1e6 . PMID   1409539.
  10. 1 2 Oesch F, Kaubisch N, Jerina DM, Daly JW (1971). "Hepatic epoxide hydrase. Structure-activity relationships for substrates and inhibitors". Biochemistry. 10 (26): 4858–66. doi:10.1021/bi00802a005. PMID   5134533.
  11. Oesch F, Raphael D, Schwind H, Glatt HR (1977). "Species differences in activating and inactivating enzymes related to the control of mutagenic metabolites". Arch. Toxicol. 39 (1–2): 97–108. doi:10.1007/BF00343279. PMID   341853. S2CID   37862668.
  12. Coller JK, Fritz P, Zanger UM, Siegle I, Eichelbaum M, Kroemer HK, Mürdter TE (2001). "Distribution of microsomal epoxide hydrolase in humans: an immunohistochemical study in normal tissues, and benign and malignant tumours". Histochem. J. 33 (6): 329–36. doi:10.1023/A:1012414806166. PMID   11758809. S2CID   26868911.
  13. Voho A, Metsola K, Anttila S, Impivaara O, Järvisalo J, Vainio H, Husgafvel-Pursiainen K, Hirvonen A (2006). "EPHX1 gene polymorphisms and individual susceptibility to lung cancer". Cancer Lett. 237 (1): 102–8. doi:10.1016/j.canlet.2005.05.029. PMID   16005144.
  14. Mertes I, Fleischmann R, Glatt HR, Oesch F (1985). "Interindividual variations in the activities of cytosolic and microsomal epoxide hydrolase in human liver". Carcinogenesis. 6 (2): 219–23. doi:10.1093/carcin/6.2.219. PMID   3971488.
  15. Peng DR, Pacifici GM, Rane A (1984). "Human fetal liver cultures: basal activities and inducibility of epoxide hydrolases and aryl hydrocarbon hydroxylase". Biochem. Pharmacol. 33 (1): 71–7. doi:10.1016/0006-2952(84)90371-x. PMID   6538414.
  16. Skoda RC, Demierre A, McBride OW, Gonzalez FJ, Meyer UA (1988). "Human microsomal xenobiotic epoxide hydrolase. Complementary DNA sequence, complementary DNA-directed expression in COS-1 cells, and chromosomal localization". J. Biol. Chem. 263 (3): 1549–54. doi: 10.1016/S0021-9258(19)57339-2 . PMID   2891713.
  17. Hassett C, Robinson KB, Beck NB, Omiecinski CJ (1994). "The human microsomal epoxide hydrolase gene (EPHX1): complete nucleotide sequence and structural characterization". Genomics. 23 (2): 433–42. doi:10.1006/geno.1994.1520. PMID   7835893.
  18. Hartsfield JK, Sutcliffe MJ, Everett ET, Hassett C, Omiecinski CJ, Saari JA (1998). "Assignment1 of microsomal epoxide hydrolase (EPHX1) to human chromosome 1q42.1 by in situ hybridization". Cytogenet. Cell Genet. 83 (1–2): 44–5. doi:10.1159/000015164. PMID   9925921. S2CID   42482323.
  19. Lu AY, Thomas PE, Ryan D, Jerina DM, Levin W (1979). "Purification of human liver microsomal epoxide hydrase. Differences in the properties of the human and rat enzymes". J. Biol. Chem. 254 (13): 5878–81. doi: 10.1016/S0021-9258(18)50495-6 . PMID   109443.
  20. Fretland AJ, Omiecinski CJ (2000). "Epoxide hydrolases: biochemistry and molecular biology". Chem. Biol. Interact. 129 (1–2): 41–59. Bibcode:2000CBI...129...41F. CiteSeerX   10.1.1.462.3157 . doi:10.1016/s0009-2797(00)00197-6. PMID   11154734.
  21. Decker M, Arand M, Cronin A (2009). "Mammalian epoxide hydrolases in xenobiotic metabolism and signalling" (PDF). Arch. Toxicol. 83 (4): 297–318. doi:10.1007/s00204-009-0416-0. PMID   19340413. S2CID   25419954.
  22. Shou M, Gonzalez FJ, Gelboin HV (1996). "Stereoselective epoxidation and hydration at the K-region of polycyclic aromatic hydrocarbons by cDNA-expressed cytochromes P450 1A1, 1A2, and epoxide hydrolase". Biochemistry. 35 (49): 15807–13. doi:10.1021/bi962042z. PMID   8961944.
  23. Casson AG, Zheng Z, Porter GA, Guernsey DL (2006). "Genetic polymorphisms of microsomal epoxide hydroxylase and glutathione S-transferases M1, T1 and P1, interactions with smoking, and risk for esophageal (Barrett) adenocarcinoma". Cancer Detect. Prev. 30 (5): 423–31. doi:10.1016/j.cdp.2006.09.005. PMID   17064856.
  24. Ananthanarayanan M, von Dippe P, Levy D (1988). "Identification of the hepatocyte Na+-dependent bile acid transport protein using monoclonal antibodies". J. Biol. Chem. 263 (17): 8338–43. doi: 10.1016/S0021-9258(18)68482-0 . PMID   3372528.
  25. Vogel-Bindel U, Bentley P, Oesch F (1982). "Endogenous role of microsomal epoxide hydrolase. Ontogenesis, induction inhibition, tissue distribution, immunological behaviour and purification of microsomal epoxide hydrolase with 16 alpha, 17 alpha-epoxyandrostene-3-one as substrate". Eur. J. Biochem. 126 (2): 425–31. doi: 10.1111/j.1432-1033.1982.tb06797.x . PMID   7128597.
  26. Newman JW, Morisseau C, Hammock BD (2005). "Epoxide hydrolases: their roles and interactions with lipid metabolism". Prog. Lipid Res. 44 (1): 1–51. doi:10.1016/j.plipres.2004.10.001. PMID   15748653.
  27. Nithipatikom K, Endsley MP, Pfeiffer AW, Falck JR, Campbell WB (2014). "A novel activity of microsomal epoxide hydrolase: metabolism of the endocannabinoid 2-arachidonoylglycerol". J. Lipid Res. 55 (10): 2093–102. doi: 10.1194/jlr.M051284 . PMC   4174002 . PMID   24958911.
  28. Zusterzeel PL, Peters WH, Visser W, Hermsen KJ, Roelofs HM, Steegers EA (2001). "A polymorphism in the gene for microsomal epoxide hydrolase is associated with pre-eclampsia". J. Med. Genet. 38 (4): 234–7. doi:10.1136/jmg.38.4.234. PMC   1734856 . PMID   11283205.
  29. Laasanen J, Romppanen EL, Hiltunen M, Helisalmi S, Mannermaa A, Punnonen K, Heinonen S (2002). "Two exonic single nucleotide polymorphisms in the microsomal epoxide hydrolase gene are jointly associated with preeclampsia". Eur. J. Hum. Genet. 10 (9): 569–73. doi: 10.1038/sj.ejhg.5200849 . PMID   12173035.
  30. Zhu QS, Xing W, Qian B, von Dippe P, Shneider BL, Fox VL, Levy D (2003). "Inhibition of human m-epoxide hydrolase gene expression in a case of hypercholanemia". Biochim. Biophys. Acta. 1638 (3): 208–16. doi:10.1016/s0925-4439(03)00085-1. PMID   12878321.
  31. Buehler BA, Delimont D, van Waes M, Finnell RH (1990). "Prenatal prediction of risk of the fetal hydantoin syndrome". N. Engl. J. Med. 322 (22): 1567–72. doi: 10.1056/NEJM199005313222204 . PMID   2336087.
  32. "dbSNP" . Retrieved 29 December 2014.
  33. Hassett C, Aicher L, Sidhu JS, Omiecinski CJ (1994). "Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants". Hum. Mol. Genet. 3 (3): 421–8. doi:10.1093/hmg/3.3.421. PMC   4868095 . PMID   7516776.
  34. Benhamou S, Reinikainen M, Bouchardy C, Dayer P, Hirvonen A (1998). "Association between lung cancer and microsomal epoxide hydrolase genotypes". Cancer Res. 58 (23): 5291–3. PMID   9850050.
  35. Hosagrahara VP, Rettie AE, Hassett C, Omiecinski CJ (2004). "Functional analysis of human microsomal epoxide hydrolase genetic variants". Chem Biol Interact. 150 (2): 149–159. Bibcode:2004CBI...150..149H. doi:10.1016/j.cbi.2004.07.004. PMC   4091877 . PMID   15535985.
  36. Jourenkova-Mironova N, Mitrunen K, Bouchardy C, Dayer P, Benhamou S, Hirvonen A (2000). "High-activity microsomal epoxide hydrolase genotypes and the risk of oral, pharynx, and larynx cancers". Cancer Res. 60 (3): 534–6. PMID   10676631.
  37. Sarmanová J, Sůsová S, Gut I, Mrhalová M, Kodet R, Adámek J, Roth Z, Soucek P (2004). "Breast cancer: role of polymorphisms in biotransformation enzymes". Eur. J. Hum. Genet. 12 (10): 848–54. doi: 10.1038/sj.ejhg.5201249 . PMID   15280903.
  38. Goode EL, White KL, Vierkant RA, Phelan CM, Cunningham JM, Schildkraut JM, Berchuck A, Larson MC, Fridley BL, Olson JE, Webb PM, Chen X, Beesley J, Chenevix-Trench G, Sellers TA (2011). "Xenobiotic-Metabolizing gene polymorphisms and ovarian cancer risk". Mol. Carcinog. 50 (5): 397–402. doi:10.1002/mc.20714. PMC   3115705 . PMID   21480392.
  39. Pérez-Morales R, Méndez-Ramírez I, Moreno-Macias H, Mendoza-Posadas AD, Martínez-Ramírez OC, Castro-Hernández C, Gonsebatt ME, Rubio J (2014). "Genetic susceptibility to lung cancer based on candidate genes in a sample from the Mexican Mestizo population: a case-control study". Lung. 192 (1): 167–73. doi:10.1007/s00408-013-9536-7. PMID   24357096. S2CID   20592675.
  40. Tan X, He WW, Wang YY, Shi LJ, Chen MW (2014). "EPHX1 Tyr113His and His139Arg polymorphisms in esophageal cancer risk: a meta-analysis". Genet. Mol. Res. 13 (1): 649–59. doi: 10.4238/2014.January.28.10 . PMID   24615030.
  41. Kiyohara C, Yoshimasu K, Takayama K, Nakanishi Y (2006). "EPHX1 polymorphisms and the risk of lung cancer: a HuGE review". Epidemiology. 17 (1): 89–99. doi: 10.1097/01.ede.0000187627.70026.23 . PMID   16357600. S2CID   26035006.
  42. Liu H, Li HY, Chen HJ, Huang YJ, Zhang S, Wang J (2013). "EPHX1 A139G polymorphism and lung cancer risk: a meta-analysis". Tumour Biol. 34 (1): 155–63. doi:10.1007/s13277-012-0523-z. PMID   23055191. S2CID   16057113.
  43. Wang S, Zhu J, Zhang R, Wang S, Gu Z (2013). "Association between microsomal epoxide hydrolase 1 T113C polymorphism and susceptibility to lung cancer". Tumour Biol. 34 (2): 1045–52. doi:10.1007/s13277-012-0644-4. PMID   23378225. S2CID   18639774.
  44. Hu JJ, Wang ZT, Li B (2013). "Meta-analysis demonstrates lack of an association of microsomal epoxide hydrolase 1 polymorphisms with esophageal cancer risk". Genet. Mol. Res. 12 (4): 4540–8. doi: 10.4238/2013.October.15.2 . PMID   24222229.
  45. Duan CY, Liu MY, Li SB, Ma KS, Bie P (2014). "Lack of association of EPHX1 gene polymorphisms with risk of hepatocellular carcinoma: a meta-analysis". Tumour Biol. 35 (1): 659–66. doi:10.1007/s13277-013-1090-7. PMID   23955801. S2CID   14846609.
  46. Lee J, Dahl M, Nordestgaard BG (2011). "Genetically lowered microsomal epoxide hydrolase activity and tobacco-related cancer in 47,000 individuals". Cancer Epidemiol. Biomarkers Prev. 20 (8): 1673–82. doi: 10.1158/1055-9965.EPI-10-1165 . PMID   21653646.
  47. Li H, Fu WP, Hong ZH (2013). "Microsomal epoxide hydrolase gene polymorphisms and risk of chronic obstructive pulmonary disease: A comprehensive meta-analysis". Oncol Lett. 5 (3): 1022–1030. doi:10.3892/ol.2012.1099. PMC   3576314 . PMID   23426996.
  48. Liu M, Sun A, Shin EJ, Liu X, Kim SG, Runyons CR, Markesbery W, Kim HC, Bing G (2006). "Expression of microsomal epoxide hydrolase is elevated in Alzheimer's hippocampus and induced by exogenous beta-amyloid and trimethyl-tin". Eur J Neurosci. 23 (8): 2027–2034. doi: 10.1111/j.1460-9568.2006.04724.x . PMID   16630050. S2CID   5969583.
  49. Shin EJ, Bing G, Chae JS, Kim TW, Bach JH, Park DH, Yamada K, Nabeshima T, Kim HC (2009). "Role of microsomal epoxide hydrolase in methamphetamine-induced drug dependence in mice". J Neurosci Res. 87 (16): 3679–3686. doi:10.1002/jnr.22166. PMID   19598248. S2CID   13400323.
  50. Marowsky A, Burgener J, Falck JR, Fritschy JM, Arand M (2009). "Distribution of soluble and microsomal epoxide hydrolase in the mouse brain and its contribution to cerebral epoxyeicosatrienoic acid metabolism". Neuroscience. 163 (2): 646–661. doi:10.1016/j.neuroscience.2009.06.033. PMID   19540314. S2CID   25808698.

Further reading