Economic order quantity

Last updated

Economic order quantity (EOQ), also known as financial purchase quantity or economic buying quantity,[ citation needed ] is the order quantity that minimizes the total holding costs and ordering costs in inventory management. It is one of the oldest classical production scheduling models. The model was developed by Ford W. Harris in 1913, but the consultant R. H. Wilson applied it extensively, and he and K. Andler are given credit for their in-depth analysis. [1]

Contents

Overview

EOQ applies only when demand for a product is constant over a period of time (such as a year) and each new order is delivered in full when inventory reaches zero. There is a fixed cost for each order placed, regardless of the quantity of items ordered; an order is assumed to contain only one type of inventory item. There is also a cost for each unit held in storage, commonly known as holding cost, sometimes expressed as a percentage of the purchase cost of the item. Although the EOQ formulation is straightforward, factors such as transportation rates and quantity discounts factor into its real-world application.

The EOQ indicates the optimal number of units to order to minimize the total cost associated with the purchase, delivery, and storage of the product.

The required parameters to the solution are the total demand for the year, the purchase cost for each item, the fixed cost to place the order for a single item and the storage cost for each item per year. Note that the number of times an order is placed will also affect the total cost, though this number can be determined from the other parameters.

Variables

Total cost function and derivation of EOQ formula

The single-item EOQ formula finds the minimum point of the following cost function:

Total Cost = purchase cost or production cost + ordering cost + holding cost

Where:

.

To determine the minimum point of the total cost curve, calculate the derivative of the total cost with respect to Q (assume all other variables are constant) and set it equal to 0:

Solving for Q gives Q* (the optimal order quantity):

Therefore:

Economic Order Quantity

Q* is independent of P; it is a function of only K, D, h.

The optimal value Q* may also be found by recognizing that

where the non-negative quadratic term disappears for which provides the cost minimum

Example

Economic order quantity = = 400 units

Number of orders per year (based on EOQ)

Total cost

Total cost

If we check the total cost for any order quantity other than 400(=EOQ), we will see that the cost is higher. For instance, supposing 500 units per order, then

Total cost

Similarly, if we choose 300 for the order quantity, then

Total cost

This illustrates that the economic order quantity is always in the best interests of the firm.

Extensions of the EOQ model

Quantity discounts

An important extension to the EOQ model is to accommodate quantity discounts. There are two main types of quantity discounts: (1) all-units and (2) incremental. [2] [3] Here is a numerical example:

In order to find the optimal order quantity under different quantity discount schemes, one should use algorithms; these algorithms are developed under the assumption that the EOQ policy is still optimal with quantity discounts. Perera et al. (2017) [4] establish this optimality and fully characterize the (s,S) optimality within the EOQ setting under general cost structures.

Design of optimal quantity discount schedules

In presence of a strategic customer, who responds optimally to discount schedules, the design of an optimal quantity discount scheme by the supplier is complex and has to be done carefully. This is particularly so when the demand at the customer is itself uncertain. An interesting effect called the "reverse bullwhip" takes place where an increase in consumer demand uncertainty actually reduces order quantity uncertainty at the supplier. [5]

Backordering costs and multiple items

Several extensions can be made to the EOQ model, including backordering costs [6] and multiple items. In the case backorders are permitted, the inventory carrying costs per cycle are: [7]

where s is the number of backorders when order quantity Q is delivered and is the rate of demand. The backorder cost per cycle is:

where and are backorder costs, , T being the cycle length and . The average annual variable cost is the sum of order costs, holding inventory costs and backorder costs:

To minimize impose the partial derivatives equal to zero:

Substituting the second equation into the first gives the following quadratic equation:

If either s=0 or is optimal. In the first case the optimal lot is given by the classic EOQ formula, in the second case an order is never placed and minimum yearly cost is given by . If or is optimal, if then there shouldn't be any inventory system. If solving the preceding quadratic equation yields:

If there are backorders, the reorder point is: ; with m being the largest integer and μ the lead time demand.

Additionally, the economic order interval [8] can be determined from the EOQ and the economic production quantity model (which determines the optimal production quantity) can be determined in a similar fashion.

A version of the model, the Baumol-Tobin model, has also been used to determine the money demand function, where a person's holdings of money balances can be seen in a way parallel to a firm's holdings of inventory. [9]

Malakooti (2013) [10] has introduced the multi-criteria EOQ models where the criteria could be minimizing the total cost, Order quantity (inventory), and Shortages.

A version taking the time-value of money into account was developed by Trippi and Lewin. [11]

Imperfect quality

Another important extension of the EOQ model is to consider items with imperfect quality. Salameh and Jaber (2000) were the first to study the imperfect items in an EOQ model very thoroughly. They consider an inventory problem in which the demand is deterministic and there is a fraction of imperfect items in the lot and are screened by the buyer and sold by them at the end of the circle at discount price. [12]

Criticisms

The EOQ model and its sister, the economic production quantity model (EPQ), have been criticised for "their restrictive set[s] of assumptions. [13] Guga and Musa make use of the model for an Albanian business case study and conclude that the model is "perfect theoretically, but not very suitable from the practical perspective of this firm". [14] However, James Cargal notes that the formula was developed when business calculations were undertaken "by hand", or using logarithmic tables or a slide rule. Use of spreadsheets and specialist software allows for more versatility in the use of the formula and adoption of "assumptions which are more realistic" than in the original model. [15] [ self-published source ]

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

<span class="mw-page-title-main">Legendre function</span>

In physical science and mathematics, the Legendre functionsPλ, Qλ and associated Legendre functionsPμ
λ
, Qμ
λ
, and Legendre functions of the second kind, Qn, are all solutions of Legendre's differential equation. The Legendre polynomials and the associated Legendre polynomials are also solutions of the differential equation in special cases, which, by virtue of being polynomials, have a large number of additional properties, mathematical structure, and applications. For these polynomial solutions, see the separate Wikipedia articles.

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

<span class="mw-page-title-main">Optimal control</span> Mathematical way of attaining a desired output from a dynamic system

Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the Moon with minimum fuel expenditure. Or the dynamical system could be a nation's economy, with the objective to minimize unemployment; the controls in this case could be fiscal and monetary policy. A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory.

<span class="mw-page-title-main">Reciprocal lattice</span> Fourier transform of a real-space lattice, important in solid-state physics

In physics, the reciprocal lattice emerges from the Fourier transform of another lattice. The direct lattice or real lattice is a periodic function in physical space, such as a crystal system. The reciprocal lattice exists in the mathematical space of spatial frequencies, known as reciprocal space or k space, where refers to the wavevector.

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the thermal conductivity of a lattice can be computed from the dynamical matrix of the particle-particle interactions within the lattice.

<span class="mw-page-title-main">Fresnel diffraction</span> Diffraction

In optics, the Fresnel diffraction equation for near-field diffraction is an approximation of the Kirchhoff–Fresnel diffraction that can be applied to the propagation of waves in the near field. It is used to calculate the diffraction pattern created by waves passing through an aperture or around an object, when viewed from relatively close to the object. In contrast the diffraction pattern in the far field region is given by the Fraunhofer diffraction equation.

<span class="mw-page-title-main">Charge density</span> Electric charge per unit length, area or volume

In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.

The economic production quantity model determines the quantity a company or retailer should order to minimize the total inventory costs by balancing the inventory holding cost and average fixed ordering cost. The EPQ model was developed and published by E. W. Taft, a statistical engineer working at Winchester Repeating Arms Company in New Haven, Connecticut, in 1918.

Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the Gaussian integral. Fourier integrals are also considered.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

An LC circuit can be quantized using the same methods as for the quantum harmonic oscillator. An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency:

Khabibullin's conjecture is a conjecture in mathematics related to Paley's problem for plurisubharmonic functions and to various extremal problems in the theory of entire functions of several variables. The conjecture was named after its proposer, B. N. Khabibullin.

In orbital mechanics, a frozen orbit is an orbit for an artificial satellite in which natural drifting due to the central body's shape has been minimized by careful selection of the orbital parameters. Typically, this is an orbit in which, over a long period of time, the satellite's altitude remains constant at the same point in each orbit. Changes in the inclination, position of the apsis of the orbit, and eccentricity have been minimized by choosing initial values so that their perturbations cancel out., which results in a long-term stable orbit that minimizes the use of station-keeping propellant.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.

In inventory management, Economic Batch Quantity (EBQ), also known as Optimum Batch Quantity (OBQ) is a measure used to determine the quantity of units that can be produced at the minimum average costs in a given batch or product run. EBQ is basically a refinement of the economic order quantity (EOQ) model to take into account circumstances in which the goods are produced in batches. The goal of calculating EBQ is that the product is produced in the required quantity and required quality at the lowest cost.

There is a strong scientific consensus that greenhouse effect due to carbon dioxide is a main driver of climate change. Following is an illustrative model meant for a pedagogical purpose, showing the main physical determinants of the effect.

References

  1. Hax, AC; Candea, D. (1984), Production and Operations Management, Englewood Cliffs, NJ: Prentice-Hall, p. 135, ISBN   9780137248803
  2. Nahmias, Steven (2005). Production and operations analysis. McGraw Hill Higher Education.[ page needed ]
  3. Zipkin, Paul H, Foundations of Inventory Management, McGraw Hill 2000[ page needed ]
  4. Perera, Sandun; Janakiraman, Ganesh; Niu, Shun-Chen (2017). "Optimality of (s,S) policies in EOQ models with general cost structures". International Journal of Production Economics. 187: 216–228. doi:10.1016/j.ijpe.2016.09.017.
  5. Altintas, Nihat; Erhun, Feryal; Tayur, Sridhar (2008). "Quantity Discounts Under Demand Uncertainty". Management Science. 54 (4): 777–92. doi:10.1287/mnsc.1070.0829. JSTOR   20122426.
  6. Perera, Sandun; Janakiraman, Ganesh; Niu, Shun-Chen (2017). "Optimality of (s,S) policies in EOQ models with general cost structures". International Journal of Production Economics. 187: 216–228. doi:10.1016/j.ijpe.2016.09.017.
  7. T. Whitin, G. Hadley, Analysis of Inventory Systems, Prentice Hall 1963
  8. Goyal, S.K. (1987). "A simple heuristic method for determining economic order interval for linear demand". Engineering Costs and Production Economics. 11: 53–57. doi:10.1016/0167-188X(87)90025-5.
  9. Caplin, Andrew; Leahy, John (2010). "Economic Theory and the World of Practice: A Celebration of the (s, S) Model". The Journal of Economic Perspectives. 24 (1): 183–201. CiteSeerX   10.1.1.730.8784 . doi:10.1257/jep.24.1.183. JSTOR   25703488.
  10. Malakooti, B (2013). Operations and Production Systems with Multiple Objectives. John Wiley & Sons. ISBN   978-1-118-58537-5.[ page needed ]
  11. Trippi, Robert R.; Lewin, Donald E. (1974). "A Present Value Formulation of the Classical Eoq Problem". Decision Sciences. 5 (1): 30–35. doi:10.1111/j.1540-5915.1974.tb00592.x.
  12. Salameh, M.K.; Jaber, M.Y. (March 2000). "Economic production quantity model for items with imperfect quality". International Journal of Production Economics. 64 (1–3): 59–64. doi:10.1016/s0925-5273(99)00044-4. ISSN   0925-5273.
  13. Tao, Z., A. L. Guiffrida, and M. D. Troutt, "A green cost based economic production/order quantity model", in Proceedings of the 1st Annual Kent State International Symposium on Green Supply Chains, Canton, Ohio, US, 29–30 July 2010
  14. Guga, E. and Musa, O. (2015) in Inventory Management through EOQ Model, International Journal of Economics, Commerce & Management, Vol. III, Issue 12, December 2015, accessed 9 February 2024
  15. Cargal, J. M. (2003), The EOQ Formula, Troy University, accessed 9 February 2024

Further reading