The newsvendor (or newsboy or single-period [1] or salvageable) model is a mathematical model in operations management and applied economics used to determine optimal inventory levels. It is (typically) characterized by fixed prices and uncertain demand for a perishable product. If the inventory level is , each unit of demand above is lost in potential sales. This model is also known as the newsvendor problem or newsboy problem by analogy with the situation faced by a newspaper vendor who must decide how many copies of the day's paper to stock in the face of uncertain demand and knowing that unsold copies will be worthless at the end of the day.
The mathematical problem appears to date from 1888 [2] where Edgeworth used the central limit theorem to determine the optimal cash reserves to satisfy random withdrawals from depositors. [3] According to Chen, Cheng, Choi and Wang (2016), the term "newsboy" was first mentioned in an example of the Morse and Kimball (1951)'s book. [4] The problem was termed the "Christmas tree problem" and "newboy problem" in the 1960s and 1970s, and beginning in the 1980s gender neutral vocabulary like "newsperson" began to be used. According to Evan Porteus, Matt Sobel coined the term "newsvendor problem". [5]
The modern formulation relates to a paper in Econometrica by Kenneth Arrow, T. Harris, and Jacob Marshak. [6]
More recent research on the classic newsvendor problem in particular focused on behavioral aspects: when trying to solve the problem in messy real-world contexts, to what extent do decision makers systematically vary from the optimum? Experimental and empirical research has shown that decision makers tend to be biased towards ordering too close to the expected demand (pull-to-center effect [7] ) and too close to the realisation from the previous period (demand chasing [8] ).
This model can also be applied to period review systems. [9]
The standard newsvendor profit function is
where is a random variable with probability distribution representing demand, each unit is sold for price and purchased for price , is the number of units stocked, and is the expectation operator. The solution to the optimal stocking quantity of the newsvendor which maximizes expected profit is:
where denotes the generalized inverse cumulative distribution function of .
Intuitively, this ratio, referred to as the critical fractile, balances the cost of being understocked (a lost sale worth ) and the total costs of being either overstocked or understocked (where the cost of being overstocked is the inventory cost, or so total cost is simply ).
The critical fractile formula is known as Littlewood's rule in the yield management literature.
In the following cases, assume that the retail price, , is $7 per unit and the purchase price is , is $5 per unit. This gives a critical fractile of
Let demand, , follow a uniform distribution (continuous) between and .
Therefore, the optimal inventory level is approximately 59 units.
Let demand, , follow a normal distribution with a mean, , demand of 50 and a standard deviation, , of 20.
Therefore, optimal inventory level is approximately 39 units.
Let demand, , follow a lognormal distribution with a mean demand of 50, , and a standard deviation, , of 0.2.
Therefore, optimal inventory level is approximately 45 units.
If (i.e. the retail price is less than the purchase price), the numerator becomes negative. In this situation, the optimal purchase quantity is zero to avoid a marginal loss.
To derive the critical fractile formula, start with and condition on the event :
Now use
where . The denominator of this expression is , so now we can write:
So
Take the derivative with respect to :
Now optimize:
Technically, we should also check for convexity:
Since is monotone non-decreasing, this second derivative is always non-positive, so the critical point determined above is a global maximum.
The problem above is cast as one of maximizing profit, although it can be cast slightly differently, with the same result. If the demand D exceeds the provided quantity q, then an opportunity cost of represents lost revenue not realized because of a shortage of inventory. On the other hand, if , then (because the items being sold are perishable), there is an overage cost of . This problem can also be posed as one of minimizing the expectation of the sum of the opportunity cost and the overage cost, keeping in mind that only one of these is ever incurred for any particular realization of . The derivation of this is as follows:
The derivative of this expression, with respect to , is
This is obviously the negative of the derivative arrived at above, and this is a minimization instead of a maximization formulation, so the critical point will be the same.
Assume that the 'newsvendor' is in fact a small company that wants to produce goods to an uncertain market. In this more general situation the cost function of the newsvendor (company) can be formulated in the following manner:
where the individual parameters are the following:
In , the first order loss function captures the expected shortage quantity; its complement, , denotes the expected product quantity in stock at the end of the period. [10]
On the basis of this cost function the determination of the optimal inventory level is a minimization problem. So in the long run the amount of cost-optimal end-product can be calculated on the basis of the following relation: [1]
In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
In probability theory, the expected value is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would "expect" to get in reality.
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.
In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality.
In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation; it is a simple corollary that the opposite is true of concave transformations.
Quantization, in mathematics and digital signal processing, is the process of mapping input values from a large set to output values in a (countable) smaller set, often with a finite number of elements. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all lossy compression algorithms.
In mathematics, trigonometric substitution is the replacement of trigonometric functions for other expressions. In calculus, trigonometric substitution is a technique for evaluating integrals. Moreover, one may use the trigonometric identities to simplify certain integrals containing radical expressions. Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.
In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.
The Hamilton-Jacobi-Bellman (HJB) equation is a nonlinear partial differential equation that provides necessary and sufficient conditions for optimality of a control with respect to a loss function. Its solution is the value function of the optimal control problem which, once known, can be used to obtain the optimal control by taking the maximizer of the Hamiltonian involved in the HJB equation.
In probability theory, a Chernoff bound is an exponentially decreasing upper bound on the tail of a random variable based on its moment generating function. The minimum of all such exponential bounds forms the Chernoff or Chernoff-Cramér bound, which may decay faster than exponential. It is especially useful for sums of independent random variables, such as sums of Bernoulli random variables.
Economic order quantity (EOQ), also known as financial purchase quantity or economic buying quantity, is the order quantity that minimizes the total holding costs and ordering costs in inventory management. It is one of the oldest classical production scheduling models. The model was developed by Ford W. Harris in 1913, but the consultant R. H. Wilson applied it extensively, and he and K. Andler are given credit for their in-depth analysis.
In probability theory and statistics, the continuous uniform distributions or rectangular distributions are a family of symmetric probability distributions. Such a distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. The bounds are defined by the parameters, and which are the minimum and maximum values. The interval can either be closed or open. Therefore, the distribution is often abbreviated where stands for uniform distribution. The difference between the bounds defines the interval length; all intervals of the same length on the distribution's support are equally probable. It is the maximum entropy probability distribution for a random variable under no constraint other than that it is contained in the distribution's support.
The economic lot scheduling problem (ELSP) is a problem in operations management and inventory theory that has been studied by many researchers for more than 50 years. The term was first used in 1958 by professor Jack D. Rogers of Berkeley, who extended the economic order quantity model to the case where there are several products to be produced on the same machine, so that one must decide both the lot size for each product and when each lot should be produced. The method illustrated by Jack D. Rogers draws on a 1956 paper from Welch, W. Evert. The ELSP is a mathematical model of a common issue for almost any company or industry: planning what to manufacture, when to manufacture and how much to manufacture.
Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.
The Price of Anarchy (PoA) is a concept in economics and game theory that measures how the efficiency of a system degrades due to selfish behavior of its agents. It is a general notion that can be extended to diverse systems and notions of efficiency. For example, consider the system of transportation of a city and many agents trying to go from some initial location to a destination. Here, efficiency means the average time for an agent to reach the destination. In the 'centralized' solution, a central authority can tell each agent which path to take in order to minimize the average travel time. In the 'decentralized' version, each agent chooses its own path. The Price of Anarchy measures the ratio between average travel time in the two cases.
The dynamic lot-size model in inventory theory, is a generalization of the economic order quantity model that takes into account that demand for the product varies over time. The model was introduced by Harvey M. Wagner and Thomson M. Whitin in 1958.
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.
The min-entropy, in information theory, is the smallest of the Rényi family of entropies, corresponding to the most conservative way of measuring the unpredictability of a set of outcomes, as the negative logarithm of the probability of the most likely outcome. The various Rényi entropies are all equal for a uniform distribution, but measure the unpredictability of a nonuniform distribution in different ways. The min-entropy is never greater than the ordinary or Shannon entropy and that in turn is never greater than the Hartley or max-entropy, defined as the logarithm of the number of outcomes with nonzero probability.
The base stock model is a statistical model in inventory theory. In this model inventory is refilled one unit at a time and demand is random. If there is only one replenishment, then the problem can be solved with the newsvendor model.
The (Q,r) model is a class of models in inventory theory. A general (Q,r) model can be extended from both the EOQ model and the base stock model