Energy planning has a number of different meanings, but the most common meaning of the term is the process of developing long-range policies to help guide the future of a local, national, regional or even the global energy system. [1] Energy planning is often conducted within governmental organizations but may also be carried out by large energy companies such as electric utilities or oil and gas producers. These oil and gas producers release greenhouse gas emissions. Energy planning may be carried out with input from different stakeholders drawn from government agencies, local utilities, academia and other interest groups.
Since 1973, energy modeling, on which energy planning is based, has developed significantly. Energy models can be classified into three groups: descriptive, normative, and futuristic forecasting. [2]
Energy planning is often conducted using integrated approaches that consider both the provision of energy supplies and the role of energy efficiency in reducing demands ( Integrated Resource Planning ). [3] Energy planning should always reflect the outcomes of population growth and economic development. There are also several alternative energy solutions which avoid the release of greenhouse gasses, like electrifying current machines and using nuclear energy. A unused energy plan for cities is created as a result of a careful investigation of the arranging prepare, which coordinating city arranging and vitality arranging together and gives energy arrangements for high-level cities and mechanical parks. [4]
This section needs additional citations for verification .(October 2021) |
Energy planning has traditionally played a strong role in setting the framework for regulations in the energy sector (for example, influencing what type of power plants might be built or what prices were charged for fuels). But in the past two decades[ when? ] many countries have deregulated their energy systems so that the role of energy planning has been reduced, and decisions have increasingly been left to the market. This has arguably led to increased competition in the energy sector, although there is little evidence that this has translated into lower energy prices for consumers. Indeed, in some cases, deregulation has led to significant concentrations of "market power" with large very profitable companies having a large influence as price setters.
Approaches to energy planning depends on the planning agent and the scope of the exercise. Several catch-phrases are associated with energy planning. Basic to all is resource planning, i.e. a view of the possible sources of energy in the future. A forking in methods is whether the planner considers the possibility of influencing the consumption (demand) for energy. The 1970s energy crisis ended a period of relatively stable energy prices and stable supply-demand relation. Concepts of demand side management, least cost planning and integrated resource planning (IRP) emerged with new emphasis on the need to reduce energy demand by new technologies or simple energy saving. [5] [6]
Further global integration of energy supply systems and local and global environmental limits amplifies the scope of planning both in subject and time perspective. Sustainable energy planning should consider environmental impacts of energy consumption and production, particularly in light of the threat of global climate change, which is caused largely by emissions of greenhouse gases from the world's energy systems, which is a long-term process.
The 2022 renewable energy industry outlook shows supportive policies from an administration focused on combatting climate change in 2022's political landscape aid an expected growth of the renewable energy industry [7] Biden has argued in favor of developing the clean energy industry in the US and in the world to vigorously address climate change. President Biden expressed his intention to move away from the oil industry. [8] 2022 administration calls for, "Plan for Climate Change and Environmental Justice", which aims to reach 100% carbon-free power generation by 2035 and net-zero emissions by 2050 in the USA. [9]
Many OECD countries and some U.S. states are now moving to more closely regulate their energy systems. For example, many countries and states have been adopting targets for emissions of CO2 and other greenhouse gases. In light of these developments, broad scope integrated energy planning could become increasingly important [10]
Sustainable Energy Planning takes a more holistic approach to the problem of planning for future energy needs. It is based on a structured decision making process based on six key steps, namely:
Designing for implementation is often carried out using "Logical Framework Analysis" which interrogates a proposed project and checks that it is completely logical, that it has no fatal errors and that appropriate contingency arrangements have been put in place to ensure that the complete project will not fail if a particular strand of the project fails.
Sustainable energy planning is particularly appropriate for communities who want to develop their own energy security, while employing best available practice in their planning processes. [1]
Energy planning can be conducted on different software platforms and over various timespans and with different qualities of resolution (i.e very short divisions of time/space or very large divisions). There are multiple platforms available for all sorts of energy planning analysis, with focuses on different areas, and significant growth in terms of modeling software or platforms available in recent years. Energy planning tools can be identified as commercial, open source, educational, free, and as used by governments (often custom tools). [11]
One potential energy option is the move to electrify all machines that currently use fossil fuels for their energy source. There are already electric alternatives available such as electric cars, electric cooktops, and electric heat pumps, now these products need to be widely implemented to electrify and decarbonize our energy use. To reduce our dependence on fossil fuels and transfer to electric machines, it requires that all electricity be generated by renewable sources. As of 2020 60.3% of all energy generated in the United States came from fossil fuels, 19.7% came from nuclear energy, and 19.8% came from renewables. [12] The United States is still heavily relying on fossil fuels as a source of energy. For the electrification of our machines to help the efforts to decarbonize, more renewable energy sources, such as wind and solar would have to be built.
Another potential problem that comes with the use of renewable energy is the energy transmission. A study conducted by Princeton University found that the locations with the highest renewable potential are in the Midwest, however, the places with the highest energy demand are coastal cities. [13] To effectively make use of the electricity coming from these renewable sources, the U.S. electric grid would have to be nationalized, and more high voltage transmission lines would have to be built. The total amount of electricity that the grid would have to be able to accommodate has to increase. If more electric cars were being driven there would be a decline in gasoline demand and an increased demand for electricity, this increased demand for electricity would require our electric grids to be able to transport more energy at any given moment than is currently viable.
Nuclear energy is sometimes considered to be a clean energy source. [14] Nuclear energy's only associated carbon emission takes place during the process of mining for uranium, but the process of obtaining energy from uranium does not emit any carbon. [15] A primary concern in using nuclear energy stems from the issue of what to do with radioactive waste. The highest level source of radioactive waste comes from the spent reactor fuel, the radioactive fuel decreases over time through radioactive decay. [16] The time it takes for the radioactive waste to decay depends on the length of the substance's half-life. Currently, the United States does not have a permanent disposal facility for high-level nuclear waste.
Public support behind increasing nuclear energy production is an important consideration when planning for sustainable energy. Nuclear energy production has a complicated past. Multiple nuclear power plants having accidents or meltdowns has tainted the reputation of nuclear energy for many. A considerable section of the public is concerned about the health and environmental impacts of a nuclear power plant melting down, believing that the risk is not worth the reward. Though there is a portion of the population that believes expanding nuclear energy is necessary and that the threats of climate change far outweigh the possibility of a meltdown, especially considering the advancements in technology that have been made within recent decades.
The majority of global manmade greenhouse gas emissions is derived from the energy sector, contributing to 72.0% of global emissions. [17] The majority of that energy goes toward producing electricity and heat (31.0%), the next largest contributor is agriculture (11%), followed by transportation (15%), forestry (6%) and manufacturing (12%). [18] There are multiple different molecular compounds that fall under the classification of green house gases including, carbon dioxide, methane, and nitrous oxide. Carbon dioxide is the largest emitted greenhouse gas, making up 76% of global emission. Methane is the second largest emitted greenhouse gas at 16%, methane is primarily emitted from the agriculture industry. Lastly nitrous oxide makes up 6% of global emitted greenhouse gases, agriculture and industry are the largest emitters of nitrous oxide. [19]
The challenges in the energy sector include the reliance on coal. Coal production remains key to the energy mix and global imports rely on coal to meet the growing demand for gas [20] Energy planning evaluates the current energy situation and estimates future changes based on industrialization patterns and resource availability. Many of the future changes and solutions depend on the global effort to move away from coal and begin making energy efficient technology and continue to electrify the world. [21]
Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery to end users or its storage, using for example, the pumped-storage method.
Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include the production of renewable, nuclear, and fossil fuel derived sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.
Electric power systems consist of generation plants of different energy sources, transmission networks, and distribution lines. Each of these components can have environmental impacts at multiple stages of their development and use including in their construction, during the generation of electricity, and in their decommissioning and disposal. These impacts can be split into operational impacts and construction impacts. All forms of electricity generation have some form of environmental impact, but coal-fired power is the dirtiest. This page is organized by energy source and includes impacts such as water usage, emissions, local pollution, and wildlife displacement.
A zero-emission vehicle, or ZEV, is a vehicle that does not emit exhaust gas or other pollutants from the onboard source of power. The California definition also adds that this includes under any and all possible operational modes and conditions. This is because under cold-start conditions for example, internal combustion engines tend to produce the maximum amount of pollutants. In a number of countries and states, transport is cited as the main source of greenhouse gases (GHG) and other pollutants. The desire to reduce this is thus politically strong.
Energy is sustainable if it "meets the needs of the present without compromising the ability of future generations to meet their own needs." Definitions of sustainable energy usually look at its effects on the environment, the economy and society. These impacts range from greenhouse gas emissions and air pollution to energy poverty and toxic waste. Renewable energy sources such as wind, hydro, solar, and geothermal energy can cause environmental damage, but are generally far more sustainable than fossil fuel sources.
A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal, oil, or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.
Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere. Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100, significantly above the 2015 Paris Agreement's goal of limiting global warming to below 2 °C.
A low-carbon economy (LCE) is an economy which absorbs as much greenhouse gas as it emits. Greenhouse gas (GHG) emissions due to human activity are the dominant cause of observed climate change since the mid-20th century. There are many proven approaches for moving to a low-carbon economy, such as encouraging renewable energy transition, energy conservation, electrification of transportation, and carbon capture and storage. An example are zero-carbon cities.
The energy policy of Australia is subject to the regulatory and fiscal influence of all three levels of government in Australia, although only the State and Federal levels determine policy for primary industries such as coal. Federal policies for energy in Australia continue to support the coal mining and natural gas industries through subsidies for fossil fuel use and production. Australia is the 10th most coal-dependent country in the world. Coal and natural gas, along with oil-based products, are currently the primary sources of Australian energy usage and the coal industry produces over 30% of Australia's total greenhouse gas emissions. In 2018 Australia was the 8th highest emitter of greenhouse gases per capita in the world.
The United States produced 5.2 billion metric tons of carbon dioxide equivalent greenhouse gas (GHG) emissions in 2020, the second largest in the world after greenhouse gas emissions by China and among the countries with the highest greenhouse gas emissions per person. In 2019 China is estimated to have emitted 27% of world GHG, followed by the United States with 11%, then India with 6.6%. In total the United States has emitted a quarter of world GHG, more than any other country. Annual emissions are over 15 tons per person and, amongst the top eight emitters, is the highest country by greenhouse gas emissions per person.
China is both the world's largest energy consumer and the largest industrial country, and ensuring adequate energy supply to sustain economic growth has been a core concern of the Chinese Government since the founding of the People's Republic of China in 1949. Since the country's industrialization in the 1960s, China is currently the world's largest emitter of greenhouse gases, and coal in China is a major cause of global warming. However, from 2010 to 2015 China reduced energy consumption per unit of GDP by 18%, and CO2 emissions per unit of GDP by 20%. On a per-capita basis, China was only the world's 51st largest emitter of greenhouse gases in 2016. China is also the world's largest renewable energy producer, and the largest producer of hydroelectricity, solar power and wind power in the world. The energy policy of China is connected to its industrial policy, where the goals of China's industrial production dictate its energy demand managements.
The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. eGRID is issued by the U.S. Environmental Protection Agency (EPA).
Low-carbon electricity or low-carbon power is electricity produced with substantially lower greenhouse gas emissions over the entire lifecycle than power generation using fossil fuels. The energy transition to low-carbon power is one of the most important actions required to limit climate change.
Greenhouse gas emissions by Australia totalled 533 million tonnes CO2-equivalent based on greenhouse gas national inventory report data for 2019; representing per capita CO2e emissions of 21 tons, three times the global average. Coal was responsible for 30% of emissions. The national Greenhouse Gas Inventory estimates for the year to March 2021 were 494.2 million tonnes, which is 27.8 million tonnes, or 5.3%, lower than the previous year. It is 20.8% lower than in 2005. According to the government, the result reflects the decrease in transport emissions due to COVID-19 pandemic restrictions, reduced fugitive emissions, and reductions in emissions from electricity; however, there were increased greenhouse gas emissions from the land and agriculture sectors.
Energy in Switzerland is transitioning towards sustainability, targeting net zero emissions by 2050 and a 50% reduction in greenhouse gas emissions by 2030.
Greenhouse gas emissions are one of the environmental impacts of electricity generation. Measurement of life-cycle greenhouse gas emissions involves calculating the global warming potential of energy sources through life-cycle assessment. These are usually sources of only electrical energy but sometimes sources of heat are evaluated. The findings are presented in units of global warming potential per unit of electrical energy generated by that source. The scale uses the global warming potential unit, the carbon dioxide equivalent, and the unit of electrical energy, the kilowatt hour (kWh). The goal of such assessments is to cover the full life of the source, from material and fuel mining through construction to operation and waste management.
Total primary energy supply (TPES) in Slovenia was 6.80 Mtoe in 2019. In the same year, electricity production was 16.1 TWh, consumption was 14.9 TWh.
An energy transition is a major structural change to energy supply and consumption in an energy system. Currently, a transition to sustainable energy is underway to limit climate change. Most of the sustainable energy is renewable energy. Therefore, another term for energy transition is renewable energy transition. The current transition aims to reduce greenhouse gas emissions from energy quickly and sustainably, mostly by phasing-down fossil fuels and changing as many processes as possible to operate on low carbon electricity. A previous energy transition perhaps took place during the Industrial Revolution from 1760 onwards, from wood and other biomass to coal, followed by oil and later natural gas.
China's greenhouse gas emissions are the largest of any country in the world both in production and consumption terms, and stem mainly from coal burning, including coal power, coal mining, and blast furnaces producing iron and steel. When measuring production-based emissions, China emitted over 14 gigatonnes (Gt) CO2eq of greenhouse gases in 2019, 27% of the world total. When measuring in consumption-based terms, which adds emissions associated with imported goods and extracts those associated with exported goods, China accounts for 13 gigatonnes (Gt) or 25% of global emissions. According to the Carbon Majors Database, Chinese state coal production alone accounts for 14% of historic global emissions.
World energy supply and consumption refers to the global supply of energy resources and its consumption. The system of global energy supply consists of the energy development, refinement, and trade of energy. Energy supplies may exist in various forms such as raw resources or more processed and refined forms of energy. The raw energy resources include for example coal, unprocessed oil & gas, uranium. In comparison, the refined forms of energy include for example refined oil that becomes fuel and electricity. Energy resources may be used in various different ways, depending on the specific resource, and intended end use. Energy production and consumption play a significant role in the global economy. It is needed in industry and global transportation. The total energy supply chain, from production to final consumption, involves many activities that cause a loss of useful energy.