Enterococcus malodoratus

Last updated

Enterococcus malodoratus
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Bacillota
Class: Bacilli
Order: Lactobacillales
Family: Enterococcaceae
Genus: Enterococcus
Species:
E. malodoratus
Binomial name
Enterococcus malodoratus
Collins et al. 1984

Enterococcus malodoratus is a species of the genus Enterococcus and a gram positive bacteria capable of opportunistic pathogenic response. These microbes have a thick polypeptide layer. [1] Enterococcus can be found in the gastrointestinal tracts of humans and other mammals. In a study on the enterococcal flora of swine, E. malodoratus was found in the intestines and feces. It was not identified within the tonsils of swine, nor within cats, calves, dogs, horse, or poultry. [2] The name "malodoratus" translates to "ill smelling". [1]

Contents

Physiology

Enterococcus malodoratus is a nonmotile, facultatively anaerobic microbe, as well as a chemoorganotroph with fermentative metabolism. [1] [3] The cells are coccoid in structure, found mostly in pairs or short streptococcus chains. Unlike many other Enterococcus species, E. malodoratus does not usually grow at 45 degrees Celsius, nor does it survive heating at 60 degrees Celsius for 30 minutes. It is nonpigmented. E. malodoratus does not produce methylcarbinol [1] or hydrolyze arginine. [4] In carbohydrate and raffinose broths, E. malodoratus forms acid. [4] It does not form endospores thus separating it from bacilli and clostridia species. [3]

Pathology

The genus Enterococcus is "capable of inducing platelet aggregation and tissue factor-dependent fibrin production, which may be relevant to the pathogenesis of enterococcal endocarditis". [5] The microbe is frequently the cause of hospital-acquired nosocomial infections, bloodstream infections, and urinary tract infections in its host. Though a normal part of the biota of the intestinal tract of humans and other mammals, Enterococci can also survive for lengths of time with adhesion to environmental surfaces; thus contributing to transmission and possible contagion between hosts. [6] The genus has also been proven to survive desiccation. [3] In general, the inhospitable, acidic, and competitive environment of the gastrointestinal tract limits the spread of enterococci. However, it is often during the early stages of a medical intervention that the enterococci can successfully move and colonize beyond the neutral area near the colon. [3]

Diagnosis/identification

DNA methods have been used by researchers to correctly identify specific species within the genus Enterococcus. Using the chaperonin 60 gene (Cpn60), specific species of DNA sequencing can be distinguished in the ~600-bp region. It is imperative to correctly distinguish between Enterococcus species, as some species have been found to be resistant to some drug therapies. In fact, the genus Enterococcus has become important in the study of super infections and pathogenic resistance to antibiotics. E. malodoratus, specifically, has not yet been found to have developed that resistance. [7]

Historical

Until 1984, all Enterococcus species were considered part of the genus Streptococcus. It was during the 1980s that studies on fatty acid composition, nucleic acid hybridization, and comparative oligonucleotide cataloguing of 16S rRNA showed the significant differences between enterococci and streptococci. [8] The differences were enough to establish Enterococcus as a genus of its own. Each species within the enterococci category was reclassified, including E. malodoratus – originally known as S. faecalis subsp. malodoratus. [1]

Related Research Articles

<i>Streptococcus</i> Genus of bacteria

Streptococcus is a genus of gram-positive coccus or spherical bacteria that belongs to the family Streptococcaceae, within the order Lactobacillales, in the phylum Bacillota. Cell division in streptococci occurs along a single axis, so as they grow, they tend to form pairs or chains that may appear bent or twisted. This differs from staphylococci, which divide along multiple axes, thereby generating irregular, grape-like clusters of cells. Most streptococci are oxidase-negative and catalase-negative, and many are facultative anaerobes.

<i>Enterococcus</i> Genus of bacteria

Enterococcus is a large genus of lactic acid bacteria of the phylum Bacillota. Enterococci are gram-positive cocci that often occur in pairs (diplococci) or short chains, and are difficult to distinguish from streptococci on physical characteristics alone. Two species are common commensal organisms in the intestines of humans: E. faecalis (90–95%) and E. faecium (5–10%). Rare clusters of infections occur with other species, including E. casseliflavus, E. gallinarum, and E. raffinosus.

<i>Lactococcus</i> Genus of bacteria

Lactococcus is a genus of lactic acid bacteria that were formerly included in the genus Streptococcus Group N1. They are known as homofermenters meaning that they produce a single product, lactic acid in this case, as the major or only product of glucose fermentation. Their homofermentative character can be altered by adjusting environmental conditions such as pH, glucose concentration, and nutrient limitation. They are gram-positive, catalase-negative, non-motile cocci that are found singly, in pairs, or in chains. The genus contains strains known to grow at or below 7˚C.

<i>Escherichia</i> Genus of bacteria

Escherichia is a genus of Gram-negative, non-spore-forming, facultatively anaerobic, rod-shaped bacteria from the family Enterobacteriaceae. In those species which are inhabitants of the gastrointestinal tracts of warm-blooded animals, Escherichia species provide a portion of the microbially derived vitamin K for their host. A number of the species of Escherichia are pathogenic. The genus is named after Theodor Escherich, the discoverer of Escherichia coli. Escherichia are facultative aerobes, with both aerobic and anaerobic growth, and an optimum temperature of 37 °C. Escherichia are usually motile by flagella, produce gas from fermentable carbohydrates, and do not decarboxylate lysine or hydrolyze arginine. Species include E. albertii, E. fergusonii, E. hermannii, E. marmotae and most notably, the model organism and clinically relevant E. coli. Shimwellia blattae and Pseudescherichia vulneris was formerly classified in this genus.

<i>Enterobacter</i> Genus of bacteria

Enterobacter is a genus of common Gram-negative, facultatively anaerobic, rod-shaped, non-spore-forming bacteria of the family Enterobacteriaceae. It is the type genus of the order Enterobacterales. Several strains of these bacteria are pathogenic and cause opportunistic infections in immunocompromised hosts and in those who are on mechanical ventilation. The urinary and respiratory tracts are the most common sites of infection. The genus Enterobacter is a member of the coliform group of bacteria. It does not belong to the fecal coliforms group of bacteria, unlike Escherichia coli, because it is incapable of growth at 44.5 °C in the presence of bile salts. Some of them show quorum sensing properties.

Vancomycin-resistant <i>Enterococcus</i> Bacterial strains of Enterococcus that are resistant to the antibiotic vancomycin

Vancomycin-resistant Enterococcus, or vancomycin-resistant enterococci (VRE), are bacterial strains of the genus Enterococcus that are resistant to the antibiotic vancomycin.

<i>Enterococcus faecalis</i> Species of bacterium

Enterococcus faecalis – formerly classified as part of the group D Streptococcus system – is a Gram-positive, commensal bacterium inhabiting the gastrointestinal tracts of humans. Like other species in the genus Enterococcus, E. faecalis is found in healthy humans and can be used as a probiotic. The probiotic strains such as Symbioflor1 and EF-2001 are characterized by the lack of specific genes related to drug resistance and pathogenesis. As an opportunistic pathogen, E. faecalis can cause life-threatening infections, especially in the nosocomial (hospital) environment, where the naturally high levels of antibiotic resistance found in E. faecalis contribute to its pathogenicity. E. faecalis has been frequently found in reinfected, root canal-treated teeth in prevalence values ranging from 30% to 90% of the cases. Re-infected root canal-treated teeth are about nine times more likely to harbor E. faecalis than cases of primary infections.

Streptococcus bovis is a species of Gram-positive bacteria that in humans is associated with urinary tract infections, endocarditis, sepsis, and colorectal cancer. S. gallolyticus is commonly found in the alimentary tract of cattle, sheep, and other ruminants, and may cause ruminal acidosis or feedlot bloat. It is also associated with spontaneous bacterial peritonitis, a frequent complication occurring in patients affected by cirrhosis. Equivalence with Streptococcus equinus has been contested.

Gemella morbillorum is a species of bacteria within the genus Gemella. It is a facultative anaerobic Gram positive coccus usually preferring capnophilic or microaerophilic environments. From its discovery in 1917 until 1988, it was known as Streptococcus morbillorum. The name change followed closer examination with DNA filter hybridization which found it was very close to the species Gemella haemolysans.

<span class="mw-page-title-main">Lactic acid bacteria</span> Order of bacteria

Lactobacillales are an order of gram-positive, low-GC, acid-tolerant, generally nonsporulating, nonrespiring, either rod-shaped (bacilli) or spherical (cocci) bacteria that share common metabolic and physiological characteristics. These bacteria, usually found in decomposing plants and milk products, produce lactic acid as the major metabolic end product of carbohydrate fermentation, giving them the common name lactic acid bacteria (LAB).

Enterococcus faecium is a Gram-positive, gamma-hemolytic or non-hemolytic bacterium in the genus Enterococcus. It can be commensal in the gastrointestinal tract of humans and animals, but it may also be pathogenic, causing diseases such as neonatal meningitis or endocarditis.

Streptococcus equinus is a Gram-positive, nonhemolytic, nonpathogenic, lactic acid bacterium of the genus Streptococcus. It is the principal Streptococcus found in the alimentary canal of a horse, and makes up the majority of the bacterial flora in horse feces. Equivalence with Streptococcus bovis has been contested.

Enterococcus gallinarum is a species of Enterococcus. E. gallinarum demonstrates an inherent, low-level resistance to vancomycin. Resistance is due to a chromosomal gene, vanC, which encodes for a terminal D-alanine-D-serine instead of the usual D-alanine-D-alanine in cell wall peptidoglycan precursor proteins. That is a separate mechanism than the vancomycin resistance seen in VRE isolates of E. faecium and E. faecalis which is mediated by vanA or vanB. This species is known to cause clusters of infection, although it considered very rare. It is the only other known enterococcal species besides E. faecium and E. faecalis known to cause outbreaks and spread in hospitals.

<i>Streptococcus iniae</i> Species of bacterium

Streptococcus iniae is a species of Gram-positive, sphere-shaped bacterium belonging to the genus Streptococcus. Since its isolation from an Amazon freshwater dolphin in the 1970s, S. iniae has emerged as a leading fish pathogen in aquaculture operations worldwide, resulting in over US$100M in annual losses. Since its discovery, S. iniae infections have been reported in at least 27 species of cultured or wild fish from around the world. Freshwater and saltwater fish including tilapia, red drum, hybrid striped bass, and rainbow trout are among those susceptible to infection by S. iniae. Infections in fish manifest as meningoencephalitis, skin lesions, and septicemia.

<i>Staphylococcus</i> Genus of Gram-positive bacteria

Staphylococcus is a genus of Gram-positive bacteria in the family Staphylococcaceae from the order Bacillales. Under the microscope, they appear spherical (cocci), and form in grape-like clusters. Staphylococcus species are facultative anaerobic organisms.

<span class="mw-page-title-main">Lancefield grouping</span>

Lancefield grouping is a system of classification that classifies catalase-negative Gram-positive cocci based on the carbohydrate composition of bacterial antigens found on their cell walls. The system, created by Rebecca Lancefield, was historically used to organize the various members of the family Streptococcaceae, which includes the genera Lactococcus and Streptococcus, but now is largely superfluous due to explosive growth in the number of streptococcal species identified since the 1970s. However, it has retained some clinical usefulness even after the taxonomic changes, and as of 2018, Lancefield designations are still often used to communicate medical microbiological test results.

Vagococcus fluvialis is a species of bacteria. The type strain of V. fluvialis is NCDO 2497. It rarely causes human infection. The only genetically proven case of V. fluvialis endocarditis was detected in the Cochin, India.

Enterococcus raffinosus is a bacterial species of the Gram-positive genus Enterococcus, named for its facultative anaerobic metabolism, including the ability to ferment the trisaccharide raffinose. This mesophilic microaerophile has optimal growth at 37ºC in Columbia Blood Medium. It has an ovoid morphology categorized as coccal with arrangement singly, in pairs, or short chains.

Enterococcus pseudoavium is a species of Enterococcus.

Methanogens are a group of microorganisms that produce methane as a byproduct of their metabolism. They play an important role in the digestive system of ruminants. The digestive tract of ruminants contains four major parts: rumen, reticulum, omasum and abomasum. The food with saliva first passes to the rumen for breaking into smaller particles and then moves to the reticulum, where the food is broken into further smaller particles. Any indigestible particles are sent back to the rumen for rechewing. The majority of anaerobic microbes assisting the cellulose breakdown occupy the rumen and initiate the fermentation process. The animal absorbs the fatty acids, vitamins and nutrient content on passing the partially digested food from the rumen to the omasum. This decreases the pH level and initiates the release of enzymes for further breakdown of the food which later passes to the abomasum to absorb remaining nutrients before excretion. This process takes about 9–12 hours.

References

  1. 1 2 3 4 5 Collins, M. D.; Jones, D.; Farrow, J. A. E.; Kilpper-Balz, R.; Schleifer, K. H. (1984). "Enterococcus avium nom. rev., comb. nov.; E. casseliflavus nom. rev., comb. nov.; E. durans nom. rev., comb. nov.; E. gallinarum comb. nov.; and E. malodoratus sp. nov". International Journal of Systematic Bacteriology. 34 (2): 220–223. doi: 10.1099/00207713-34-2-220 . ISSN   0020-7713.
  2. Gilmore, Michael (2002). Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. Washington, D.C.: ASM Press. pp. 57–58. ISBN   1-55581-234-1.
  3. 1 2 3 4 Holt, John (1994). Bergey's Manual of Determinative Bacteriology. Baltimore: Williams & Wilkins. pp. 528–539. ISBN   0-683-00603-7.
  4. 1 2 Lebreton, Francois; Willems, Rob (2 Feb 2014). "Enterococcus Diversity, Origins in Nature, and Gut Colonization". National Center for Biotechnology Information. PMID   24649513 . Retrieved 1 July 2014.
  5. Johnson, Alan (1994). "The pathogenicity of enterococci". Journal of Antimicrobial Chemotherapy. 33 (6): 1083–1089. doi:10.1093/jac/33.6.1083. PMID   7928803.
  6. Fraser, Susan (30 June 2014). "Enterococcal Infections". Medscape. Retrieved 1 July 2014.
  7. Goh, Swee Han; Facklam, Richard (November 2000). "Identification of Enterococcus Species and Phenotypically Similar Lactococcus and Vagococcus Species by Reverse Checkerboard Hybridization to Chaperonin 60 Gene Sequences". Journal of Clinical Microbiology. 38 (11): 3953–9. doi:10.1128/JCM.38.11.3953-3959.2000. PMC   87524 . PMID   11060051.
  8. Sood, Sema; Malhotra, Meenakshi (2008), "Enterococcal infections and antimicrobial resistance" (PDF), The Indian Journal of Medical Research, New Delhi, India: Department of Microbiology, All India Institute of Medical Sciences, 128 (2): 111–121, PMID   19001673 , retrieved 1 July 2014

Further reading