Epiphysiodesis

Last updated
Epiphysiodesis
ICD-9-CM 78.2

Epiphysiodesis is a pediatric orthopedic surgery procedure that aims at altering or stopping the bone growth naturally occurring through the growth plate also known as the physeal plate. There are two types of epiphysiodesis: temporary hemiepiphysiodesis and permanent epiphysiodesis. Temporary hemiepiphysiodesis is also known as guided growth surgery or growth modulation surgery. Temporary hemiepiphysiodesis is reversible i.e. the metal implants used to achieve epiphysiodesis can be removed after the desired correction is achieved and the growth plate can thus resume its normal growth and function. In contrast, permanent epiphysiodesis is irreversible and the growth plate function cannot be restored after surgery. Both temporary hemiepiphysiodesis and permanent epiphysiodesis are used to treat a diverse array of pediatric orthopedic disorders but the exact indications for each procedure are different.[ citation needed ]

Contents

Guided growth temporary hemiepiphysiodesis

Temporary hemiepiphysiodesis is widely used to treat angular or coronal plane deformities around the knee in children i.e. deformities occurring in the medial/lateral plane as genu varum/ genu valgum. Additionally, it has been used to treat sagittal plane deformities i.e. deformities arising the anterior/posterior plane. Temporary hemiepiphysiodesis has also been used to treat deformities around the hips and ankles [1] [2] [3] and in the upper extremity growth plates such as the distal radius growth plate. [4] Temporary hemiepiphysiodesis works through arresting or inhibiting the physeal growth at one hemi-side of the growth plate. In consequence the other hemi-side is allowed to grow normally and unhindered. This process occurs gradually and steadily and eventually leads to correction of the angular deformity in most cases. Temporary hemiepiphysiodesis or guided growth surgery has been used to treat angular deformities in children with diverse bone and joint disorders such as rickets, [5] Blount's disease, [6] [7] osteochondrodysplasias, [8] arthrogryposis multiplex congenita, [9] idiopathic, trauma, [10] and renal osteodystrophy [11] among others. Temporary hemiepiphysiodesis is increasingly been viewed as more simple and efficient alternative to the classic time-honored osteotomy or bone cutting practice. Bone osteotomy achieve deformity correction immediately while temporary hemiepiphysiodesis does so gradually. A variety of metal implants have been used to perform temporary hemiepiphysiodesis or guided growth surgery as a two-hole plate and screws and staples. Figure 1 Any metal implant originally used to achieve temporary hemiepiphysiodesis should be removed once the intended deformity correction is reached. Otherwise the child will go into the reverse deformity, a phenomenon known as overcorrection. For example, failure to remove the metal implant in due time for a child that was being treated for a genu varum can result in overcorrection to a genu valgum deformity and vice versa.[ citation needed ]

Outcome and complications

Generally, the results of temporary hemiepiphysiodesis or guided growth surgery are satisfactory. In contrast to osteotomy or external fixation correction, it is considered as a less traumatic and safe surgical method. The complications are of low profile in terms of severity and frequency generally. [2] [5] Yet, there are concerns about the use of temporary hemiepiphysiodesis in certain diseases as Blount's disease and osteochondrodysplasias. Mechanical failure of the metal implant as plate and screws and failure to achieve full correction of the deformity has been closely associated with the Blount's disease. [6] [7] Additionally, recurrence of bone deformity or rebound phenomenon and subsequent repeated surgeries has been closely linked to bone deformities arising from osteochondrodysplasias. Generally, children should be followed up for deformity recurrence or rebound after removal of the metal implant used to achieve deformity correction. [8]

Permanent epiphysiodesis

Outcome and complications

The procedure must be performed for an appropriate duration during the patient's adolescent growth phase so that the limbs are near-equal in length by the end of skeletal growth. Poor timing can lead to a length mismatch, resulting in poor outcomes and significant patient morbidity.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Rickets</span> Childhood bone disorder

Rickets is a condition that results in weak or soft bones in children, and is caused by either dietary deficiency or genetic causes. Symptoms include bowed legs, stunted growth, bone pain, large forehead, and trouble sleeping. Complications may include bone deformities, bone pseudofractures and fractures, muscle spasms, or an abnormally curved spine.

<span class="mw-page-title-main">Orthopedic surgery</span> Branch of surgery concerned with the musculoskeletal system

Orthopedic surgery or orthopedics is the branch of surgery concerned with conditions involving the musculoskeletal system. Orthopedic surgeons use both surgical and nonsurgical means to treat musculoskeletal trauma, spine diseases, sports injuries, degenerative diseases, infections, tumors, and congenital disorders.

An osteotomy is a surgical operation whereby a bone is cut to shorten or lengthen it or to change its alignment. It is sometimes performed to correct a hallux valgus, or to straighten a bone that has healed crookedly following a fracture. It is also used to correct a coxa vara, genu valgum, and genu varum. The operation is done under a general anaesthetic.

<span class="mw-page-title-main">Coxa vara</span> Deformity of the hip

Coxa vara is a deformity of the hip, whereby the angle between the head and the shaft of the femur is reduced to less than 120 degrees. This results in the leg being shortened and the development of a limp. It may be congenital and is commonly caused by injury, such as a fracture. It can also occur when the bone tissue in the neck of the femur is softer than normal, causing it to bend under the weight of the body. This may either be congenital or the result of a bone disorder. The most common cause of coxa vara is either congenital or developmental. Other common causes include metabolic bone diseases, post-Perthes deformity, osteomyelitis, and post traumatic. Shepherd's Crook deformity is a severe form of coxa vara where the proximal femur is severely deformed with a reduction in the neck shaft angle beyond 90 degrees. It is most commonly a sequela of osteogenesis imperfecta, Paget's disease, osteomyelitis, tumour and tumour-like conditions.

<span class="mw-page-title-main">Genu valgum</span> Medical condition known as knock-knee

Genu valgum, commonly called "knock-knee", is a condition in which the knees angle in and touch each other when the legs are straightened. Individuals with severe valgus deformities are typically unable to touch their feet together while simultaneously straightening the legs. The term originates from the Latin genu, 'knee', and valgus which means "bent outwards", but is also used to describe the distal portion of the knee joint which bends outwards and thus the proximal portion seems to be bent inwards.

<span class="mw-page-title-main">Genu varum</span> Varus deformity marked by (outward) bowing at the knee

Genu varum is a varus deformity marked by (outward) bowing at the knee, which means that the lower leg is angled inward (medially) in relation to the thigh's axis, giving the limb overall the appearance of an archer's bow. Usually medial angulation of both lower limb bones is involved.

<span class="mw-page-title-main">Hereditary multiple exostoses</span> Rare skeletal disorder

Hereditary multiple osteochondromas (HMO), also known as hereditary multiple exostoses, is a disorder characterized by the development of multiple benign osteocartilaginous masses (exostoses) in relation to the ends of long bones of the lower limbs such as the femurs and tibias and of the upper limbs such as the humeri and forearm bones. They are also known as osteochondromas. Additional sites of occurrence include on flat bones such as the pelvic bone and scapula. The distribution and number of these exostoses show a wide diversity among affected individuals. Exostoses usually present during childhood. The vast majority of affected individuals become clinically manifest by the time they reach adolescence. A small percentage of affected individuals are at risk for development of sarcomas as a result of malignant transformation. The incidence of hereditary multiple exostoses is around 1 in 50,000 individuals. Hereditary multiple osteochondromas is the preferred term used by the World Health Organization.

<span class="mw-page-title-main">Valgus deformity</span> Deformity in which the bone near a joint is angled outward

A valgus deformity is a condition in which the bone segment distal to a joint is angled outward, that is, angled laterally, away from the body's midline. The opposite deformation, where the twist or angulation is directed medially, toward the center of the body, is called varus.

<span class="mw-page-title-main">Distraction osteogenesis</span> Gradual bone lengthening

Distraction osteogenesis (DO), also called callus distraction, callotasis and osteodistraction, is a process used in orthopedic surgery, podiatric surgery, and oral and maxillofacial surgery to repair skeletal deformities and in reconstructive surgery. The procedure involves cutting and slowly separating bone, allowing the bone healing process to fill in the gap.

<span class="mw-page-title-main">Madelung's deformity</span> Medical condition

Madelung's deformity is usually characterized by malformed wrists and wrist bones and is often associated with Léri-Weill dyschondrosteosis. It can be bilateral or just in the one wrist. It has only been recognized within the past hundred years. Named after Otto Wilhelm Madelung (1846–1926), a German surgeon, who described it in detail, it was noted by others. Guillaume Dupuytren mentioned it in 1834, Auguste Nélaton in 1847, and Joseph-François Malgaigne in 1855.

<span class="mw-page-title-main">Kyphoscoliosis</span> Medical condition

Kyphoscoliosis describes an abnormal curvature of the spine in both the coronal and sagittal planes. It is a combination of kyphosis and scoliosis. This musculoskeletal disorder often leads to other issues in patients, such as under-ventilation of lungs, pulmonary hypertension, difficulty in performing day-to-day activities, psychological issues emanating from anxiety about acceptance among peers, especially in young patients. It can also be seen in syringomyelia, Friedreich's ataxia, spina bifida, kyphoscoliotic Ehlers–Danlos syndrome (kEDS), and Duchenne muscular dystrophy due to asymmetric weakening of the paraspinal muscles.

<span class="mw-page-title-main">Epiphyseal plate</span> Cartilage plate in the neck of a long bone

The epiphyseal plate, epiphysial plate, physis, or growth plate is a hyaline cartilage plate in the metaphysis at each end of a long bone. It is the part of a long bone where new bone growth takes place; that is, the whole bone is alive, with maintenance remodeling throughout its existing bone tissue, but the growth plate is the place where the long bone grows longer.

<span class="mw-page-title-main">Ollier disease</span> Medical condition

Ollier disease is a rare sporadic nonhereditary skeletal disorder in which typically benign cartilaginous tumors (enchondromas) develop near the growth plate cartilage. This is caused by cartilage rests that grow and reside within the metaphysis or diaphysis and eventually mineralize over time to form multiple enchondromas. Key signs of the disorder include asymmetry and shortening of the limb as well as an increased thickness of the bone margin. These symptoms are typically first visible during early childhood with the mean age of diagnosis being 13 years of age. Many patients with Ollier disease are prone to develop other malignancies including bone sarcomas that necessitate treatment and the removal of malignant bone neoplasm. Cases in patients with Ollier disease has shown a link to IDH1, IDH2, and PTH1R gene mutations. Currently, there are no forms of treatment for the underlying condition of Ollier disease but complications such as fractures, deformities, malignancies that arise from it can be treated through surgical procedures. The prevalence of this condition is estimated at around 1 in 100,000. It is unclear whether the men or women are more affected by this disorder due to conflicting case studies.

<span class="mw-page-title-main">Blount's disease</span> Medical condition

Blount's disease is a growth disorder of the tibia which causes the lower leg to angle inward, resembling a bowleg. It is also known as "tibia vara".

<span class="mw-page-title-main">Unicompartmental knee arthroplasty</span>

Unicompartmental knee arthroplasty (UKA) is a surgical procedure used to relieve arthritis in one of the knee compartments in which the damaged parts of the knee are replaced. UKA surgery may reduce post-operative pain and have a shorter recovery period than a total knee replacement procedure, particularly in people over 75 years of age. Moreover, UKAs may require a smaller incision, less tissue damage, and faster recovery times.

<span class="mw-page-title-main">Pigeon toe</span> Medical condition affecting the feet

Pigeon toe, also known as in-toeing, is a condition which causes the toes to point inward when walking. It is most common in infants and children under two years of age and, when not the result of simple muscle weakness, normally arises from underlying conditions, such as a twisted shin bone or an excessive anteversion resulting in the twisting of the thigh bone when the front part of a person's foot is turned in.

The following outline is provided as an overview of and topical guide to trauma and orthopaedics:

<span class="mw-page-title-main">Index of trauma and orthopaedics articles</span>

Orthopedic surgery is the branch of surgery concerned with conditions involving the musculoskeletal system. Orthopedic surgeons use both surgical and nonsurgical means to treat musculoskeletal injuries, sports injuries, degenerative diseases, infections, bone tumours, and congenital limb deformities. Trauma surgery and traumatology is a sub-specialty dealing with the operative management of fractures, major trauma and the multiply-injured patient.

The treatment of broken bones and dislocated joints can be traced as far back as the Ancient Greeks. Hippocrates is credited with a method of reduction of a dislocated shoulder. 16th century Spanish texts talk about the Aztecs use of reduction of fractures using fir branches. The modern discipline of orthopaedics in trauma care developed during the course of World War I, but it was not until after World War II that orthopaedics became the dominant field treating fractures in much of the world. Today, the discipline encompasses conditions such as bone fractures and bone loss, as well as spinal pathology and joint disease.

Sydney A. Haje was a Brazilian orthopedist, known internationally for his pioneering work on chest wall deformities including the creation of a conservative treatment protocol for the pectus carinatum and pectus excavatum conditions.

References

  1. Journeau, Pierre (2020). "Update on guided growth concepts around the knee in children". Orthopaedics & Traumatology: Surgery & Research. 106 (1S): S171–S180. doi: 10.1016/j.otsr.2019.04.025 . PMID   31669550.
  2. 1 2 Yang, Irene; Gottliebsen, Martin; Martinkevich, Polina; Schindeler, Aaron; Little, David G. (November 2017). "Guided growth: Current perspectives and future challenges". JBJS Reviews. 5 (11): e1. doi:10.2106/JBJS.RVW.16.00115. PMID   29112518. S2CID   30704556.
  3. Bouchard, Maryse (September 2017). "Guided Growth: Novel Applications in the Hip, Knee, and Ankle". Journal of Pediatric Orthopaedics. 37: S32–S36. doi:10.1097/BPO.0000000000001022. PMID   28799992. S2CID   43864161.
  4. EL-Sobky, Tamer A.; Samir, Shady; Atiyya, Ahmed Naeem; Mahmoud, Shady; Aly, Ahmad S.; Soliman, Ramy (21 March 2018). "Current paediatric orthopaedic practice in hereditary multiple osteochondromas of the forearm: a systematic review". SICOT-J. 4: 10. doi:10.1051/sicotj/2018002. PMC   5863686 . PMID   29565244.
  5. 1 2 EL-Sobky, Tamer A.; Samir, Shady; Baraka, Mostafa M.; Fayyad, Tamer A.; Mahran, Mahmoud A.; Aly, Ahmad S.; Amen, John; Mahmoud, Shady (January 2020). "Growth Modulation for Knee Coronal Plane Deformities in Children With Nutritional Rickets: A Prospective Series With Treatment Algorithm". JAAOS: Global Research and Reviews. 4 (1): e1900009. doi: 10.5435/JAAOSGlobal-D-19-00009 . PMC   7028784 . PMID   32159063.
  6. 1 2 Burghardt, Rolf D.; Herzenberg, John E.; Andre Strahl; Bernius, Peter; Kazim, Murteza A. (November 2018). "Treatment failures and complications in patients with Blount disease treated with temporary hemiepiphysiodesis: A critical systematic literature review". Journal of Pediatric Orthopaedics B. 27 (6): 522–529. doi:10.1097/BPB.0000000000000523. PMID   29889697. S2CID   48361879.
  7. 1 2 Fan, Bensen; Zhao, Caixia; Sabharwal, Sanjeev (January 2020). "Risk factors for failure of temporary hemiepiphysiodesis in Blount disease: A systematic review". Journal of Pediatric Orthopaedics B. 29 (1): 65–72. doi:10.1097/BPB.0000000000000603. PMID   30741749. S2CID   73445376.
  8. 1 2 Ashby, Elizabeth; Eastwood, Deborah (June 2015). "Characterization of knee alignment in children with mucopolysaccharidosis types I and II and outcome of treatment with guided growth". Journal of Children's Orthopaedics . 9 (3): 227–233. doi: 10.1007/s11832-015-0661-0 . PMC   4486501 . PMID   26076735.
  9. Trofimova, Svetlana I.; Buklaev, Dmitry S.; Petrova, Ekaterina V.; Mulevanova, Svetlana A. (14 December 2016). "Guided Growth for Correction of Knee Flexion Contracture in Patients with Arthrogryposis: Preliminary Results". Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 4 (4): 64–70. doi: 10.17816/PTORS4464-70 .
  10. Ding, Jing; Zhu, Ting; Jin, Fang-chun; Wu, Zhen-kai; Li, Hai (21 November 2019). "The effect of temporary hemiepiphysiodesis in the treatment of skeleton immature posttraumatic genu angular deformity: a retrospective study of 27 cases". Journal of Orthopaedic Surgery and Research. 14 (1): 381. doi: 10.1186/s13018-019-1426-0 . PMC   6868743 . PMID   31752945.
  11. Gigante, C.; Borgo, A.; Corradin, M. (February 2017). "Correction of lower limb deformities in children with renal osteodystrophy by guided growth technique". Journal of Children's Orthopaedics. 11 (1): 79–84. doi:10.1302/1863-2548-11-160172. PMC   5382342 . PMID   28439314.