Epithemia

Last updated

Epithemia
Epithemia sorex guertelbandansicht.jpeg
Epithemia sorex
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Stramenopiles
Phylum: Gyrista
Subphylum: Ochrophytina
Class: Bacillariophyceae
Order: Rhopalodiales
Family: Rhopalodiaceae
Genus: Epithemia
F.T.Kützing, 1844

Epithemia is a genus of diatoms belonging to the family Rhopalodiaceae. [1] The genus has cosmopolitan distribution and are found in freshwater and marine ecosystems. [2] [1] Recent studies have proposed that the genus Rhopalodia should be recategorized to join Epithemia based on phylogenetic evidence, [3] although this change in nomenclature has been disputed. [4]

Contents

Members of this genus have endosymbionts that fix nitrogen called spheroid bodies, that are derived from cyanobacteria. [5] [6] This endosymbiont is closely related to the nitroplast organelle. [2] [7] Because of this close relationship, Epithemia has been proposed as a model system to study the early stages of organelle evolution.

Because of their nitrogen fixing endosymbionts, they can be a possible indicator of eutrophication, because Epithemia abundance decreased with increased ambient inorganic N concentrations. [8] High concentrations Epithemia species would mean that there is more fixed nitrogen in the ecosystem and could act as an early indicator of nutrient overload.

Species

Those marked with a * were previously in the genus Rhopalodia. [1]

Related Research Articles

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualistic relationship. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals, and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Diatom</span> Class of microalgae found in oceans, waterways, and soil

A diatom is any member of a large group comprising several genera of algae, specifically microalgae, found in the oceans, waterways and soils of the world. Living diatoms make up a significant portion of the Earth's biomass: they generate about 20 to 50 percent of the oxygen produced on the planet each year, take in over 6.7 billion tonnes of silicon each year from the waters in which they live, and constitute nearly half of the organic material found in the oceans. The shells of dead diatoms can reach as much as a half-mile deep on the ocean floor, and the entire Amazon basin is fertilized annually by 27 million tons of diatom shell dust transported by transatlantic winds from the African Sahara, much of it from the Bodélé Depression, which was once made up of a system of fresh-water lakes.

<i>Trichodesmium</i> Genus of bacteria

Trichodesmium, also called sea sawdust, is a genus of filamentous cyanobacteria. They are found in nutrient poor tropical and subtropical ocean waters. Trichodesmium is a diazotroph; that is, it fixes atmospheric nitrogen into ammonium, a nutrient used by other organisms. Trichodesmium is thought to fix nitrogen on such a scale that it accounts for almost half of the nitrogen fixation in marine systems globally. Trichodesmium is the only known diazotroph able to fix nitrogen in daylight under aerobic conditions without the use of heterocysts.

<i>Geosiphon</i> Monotypic genus of photosynthetic, non-lichen fungi

Geosiphon is a genus of fungus in the family Geosiphonaceae. The genus is monotypic, containing the single species Geosiphon pyriformis, first described by Kützing in 1849 as Botrydium pyriforme. In 1915, Von Wettstein characterized Geosiphon pyriforme as a multinucleate alga containing endosymbiotic cyanobacteria, although he also noted the presence of chitin, a component of fungal cell walls. In 1933, Knapp was the first to suggest the fungal origin of the species and described it as a lichen with endosymbiotic cyanobacteria. It is the only member of the Glomeromycota known to not form a symbiosis with terrestrial plants in the form of arbuscular mycorrhiza.

<span class="mw-page-title-main">Lake Matano</span> Lake in Sulawesi, Indonesia

Lake Matano, also known as Matana, is a tropical lake in East Luwu Regency, South Sulawesi province, Indonesia, that is noteworthy for the unique environment in its deeper layers.

<i>Paulinella</i> Genus of single-celled organisms

Paulinella is a genus of at least eleven species including both freshwater and marine amoeboids. Like many members of euglyphids it is covered by rows of siliceous scales, and use filose pseudopods to crawl over the substrate of the benthic zone.

<span class="mw-page-title-main">Ochrophyte</span> Phylum of algae

Ochrophytes, also known as heterokontophytes or stramenochromes, are a group of algae. They are the photosynthetic stramenopiles, a group of eukaryotes, organisms with a cell nucleus, characterized by the presence of two unequal flagella, one of which has tripartite hairs called mastigonemes. In particular, they are characterized by photosynthetic organelles or plastids enclosed by four membranes, with membrane-bound compartments called thylakoids organized in piles of three, chlorophyll a and c as their photosynthetic pigments, and additional pigments such as β-carotene and xanthophylls. Ochrophytes are one of the most diverse lineages of eukaryotes, containing ecologically important algae such as brown algae and diatoms. They are classified either as phylum Ochrophyta or Heterokontophyta, or as subphylum Ochrophytina within phylum Gyrista. Their plastids are of red algal origin.

Cyanobionts are cyanobacteria that live in symbiosis with a wide range of organisms such as terrestrial or aquatic plants; as well as, algal and fungal species. They can reside within extracellular or intracellular structures of the host. In order for a cyanobacterium to successfully form a symbiotic relationship, it must be able to exchange signals with the host, overcome defense mounted by the host, be capable of hormogonia formation, chemotaxis, heterocyst formation, as well as possess adequate resilience to reside in host tissue which may present extreme conditions, such as low oxygen levels, and/or acidic mucilage. The most well-known plant-associated cyanobionts belong to the genus Nostoc. With the ability to differentiate into several cell types that have various functions, members of the genus Nostoc have the morphological plasticity, flexibility and adaptability to adjust to a wide range of environmental conditions, contributing to its high capacity to form symbiotic relationships with other organisms. Several cyanobionts involved with fungi and marine organisms also belong to the genera Richelia, Calothrix, Synechocystis, Aphanocapsa and Anabaena, as well as the species Oscillatoria spongeliae. Although there are many documented symbioses between cyanobacteria and marine organisms, little is known about the nature of many of these symbioses. The possibility of discovering more novel symbiotic relationships is apparent from preliminary microscopic observations.

Craticula is a genus of diatom that lies on or in the top layers of sediments in the freshwater to brackish water environments it inhabits. In addition to frustule morphology the genus differs from closely related species by its sexual reproduction and movement in response to light.

Grethe Berit Rytter Hasle was a Norwegian planktologist. Among the first female professors of natural science at the University of Oslo, she specialized in the study of phytoplankton.

Candidatus Atelocyanobacterium thalassa, also referred to as UCYN-A, is a nitrogen-fixing species of cyanobacteria commonly found in measurable quantities throughout the world's oceans and some seas. Members of A. thalassa are spheroid in shape and are 1-2 μm in diameter, and provide nitrogen to ocean regions by fixing non biologically available atmospheric nitrogen into biologically available ammonium that other marine microorganisms can use.

<i>Crocosphaera watsonii</i> Species of bacterium

Crocosphaera watsonii is an isolate of a species of unicellular diazotrophic marine cyanobacteria which represent less than 0.1% of the marine microbial population. They thrive in offshore, open-ocean oligotrophic regions where the waters are warmer than 24 degrees Celsius. Crocosphaera watsonii cell density can exceed 1,000 cells per milliliter within the euphotic zone; however, their growth may be limited by the concentration of phosphorus. Crocosphaera watsonii are able to contribute to the oceanic carbon and nitrogen budgets in tropical oceans due to their size, abundance, and rapid growth rate. Crocosphaera watsonii are unicellular nitrogen fixers that fix atmospheric nitrogen to ammonia during the night and contribute to new nitrogen in the oceans. They are a major source of nitrogen to open-ocean systems. Nitrogen fixation is important in the oceans as it not only allows phytoplankton to continue growing when nitrogen and ammonium are in very low supply but it also replenishes other forms of nitrogen, thus fertilizing the ocean and allowing more phytoplankton growth.

<i>Braarudosphaera bigelowii</i> Dodecahedron shaped coccolithophore

Braarudosphaera bigelowii is a coastal coccolithophore in the fossil record going back 100 million years to the Late Cretaceous.

<i>Oscillatoria brevis</i> Species of bacterium

Oscillatoria brevis is a species of the genus Oscillatoria first identified in 1892. It is a blue-green filamentous cyanobacterium, which can be found in brackish and fresh waterways. O. brevis can also be isolated from soil.

<span class="mw-page-title-main">Taxonomy of diatoms</span>

Diatoms belong to a large group called the heterokonts, which include both autotrophs such as golden algae and kelp; and heterotrophs such as water moulds. The classification of heterokonts is still unsettled: they may be designated a division, phylum, kingdom, or something intermediate to those. Consequently, diatoms are ranked anywhere from a class, usually called Diatomophyceae or Bacillariophyceae, to a division (=phylum), usually called Bacillariophyta, with corresponding changes in the ranks of their subgroups.

Richelia is a genus of nitrogen-fixing, filamentous, heterocystous and cyanobacteria. It contains the single species Richelia intracellularis. They exist as both free-living organisms as well as symbionts within potentially up to 13 diatoms distributed throughout the global ocean. As a symbiont, Richelia can associate epiphytically and as endosymbionts within the periplasmic space between the cell membrane and cell wall of diatoms.

<i>Gomphonema</i> Genus of algae

Gomphonema is a genus of diatoms belonging to the family Gomphonemataceae.

Ethmodiscus is a genus of diatoms found widely scattered throughout the intertropical and temperate zones in the world's oceans. The large diatom genus can get up to 2mm in size, and it has distinct cell features like a vacuole that comprises over 99% of its cell's volume. Despite their large size, they are known to be in open oceans in low quantity. While in the ocean, Ethmodiscus use buoyancy control to migrate up and down to the high nitrogen depths and return to the surface to photosynthesize. Additionally, the biological characteristics of Ethmodiscus are an important component in interpreting deep-sea sedimentary richness and distribution.

Greta Albrecht Fryxell was a marine scientist known for her work on the biology and taxonomy of diatoms. In 1996, she was elected a fellow of the American Association for the Advancement of Science.

Nupela is a genus of diatom. Species of Nupela typically measure less than 20 μm. The genus was first described as being isovalvar, however many recently described species are heterovalvar. The main diagnostic characteristic of the genus is the presence of an external covering over the areolae. The genus was circumscribed by Wim Vyverman and Pierre Compère in 1991, with Nupela giluwensis assigned as the type, and at that time, only species.

References

  1. 1 2 3 "Epithemia F.T.Kützing, 1844". www.gbif.org. Retrieved 23 April 2021.
  2. 1 2 3 4 Schvarcz, Christopher R.; Wilson, Samuel T.; Caffin, Mathieu; Stancheva, Rosalina; Li, Qian; Turk-Kubo, Kendra A.; White, Angelicque E.; Karl, David M.; Zehr, Jonathan P.; Steward, Grieg F. (2022-02-10). "Overlooked and widespread pennate diatom-diazotroph symbioses in the sea". Nature Communications. 13 (1): 799. Bibcode:2022NatCo..13..799S. doi:10.1038/s41467-022-28065-6. ISSN   2041-1723. PMC   8831587 . PMID   35145076.
  3. Ruck, Elizabeth C.; Nakov, Teofil; Alverson, Andrew J.; Theriot, Edward C. (2016-10-01). "Phylogeny, ecology, morphological evolution, and reclassification of the diatom orders Surirellales and Rhopalodiales". Molecular Phylogenetics and Evolution. 103: 155–171. Bibcode:2016MolPE.103..155R. doi:10.1016/j.ympev.2016.07.023. ISSN   1055-7903.
  4. Kociolek, J.P.; Greenwood, M.; Hamsher, S.E.; Miller, S.; Li, J. (2024-04-02). "Valve ultrastructure of Rhopalodia constricta (W.Smith) Krammer (Rhopalodiales, Bacillariophyceae) and a consideration of its systematic placement". Diatom Research. 39 (2): 51–60. Bibcode:2024DiaRe..39...51K. doi:10.1080/0269249X.2024.2378769. ISSN   0269-249X.
  5. Nakayama, Takuro; Kamikawa, Ryoma; Tanifuji, Goro; Kashiyama, Yuichiro; Ohkouchi, Naohiko; Archibald, John M.; Inagaki, Yuji (2014-08-05). "Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle". Proceedings of the National Academy of Sciences. 111 (31): 11407–11412. Bibcode:2014PNAS..11111407N. doi: 10.1073/pnas.1405222111 . ISSN   0027-8424. PMC   4128115 . PMID   25049384.
  6. Nakayama, Takuro; Ikegami, Yuko; Nakayama, Takeshi; Ishida, Ken-ichiro; Inagaki, Yuji; Inouye, Isao (2011-01-01). "Spheroid bodies in rhopalodiacean diatoms were derived from a single endosymbiotic cyanobacterium". Journal of Plant Research. 124 (1): 93–97. Bibcode:2011JPlR..124...93N. doi:10.1007/s10265-010-0355-0. ISSN   1618-0860. PMID   20512519.
  7. Abresch, Heidi; Bell, Tisza; Miller, Scott R (2024-01-01). "Diurnal transcriptional variation is reduced in a nitrogen-fixing diatom endosymbiont". The ISME Journal. 18 (1). doi:10.1093/ismejo/wrae064. ISSN   1751-7362. PMC   11131595 . PMID   38637300.
  8. Stancheva, Rosalina; Sheath, Robert G.; Read, Betsy A.; McArthur, Kimberly D.; Schroepfer, Chrystal; Kociolek, J. Patrick; Fetscher, A. Elizabeth (2013-12-01). "Nitrogen-fixing cyanobacteria (free-living and diatom endosymbionts): their use in southern California stream bioassessment". Hydrobiologia. 720 (1): 111–127. doi:10.1007/s10750-013-1630-6. ISSN   1573-5117. S2CID   254550477.
  9. Kociolek, J.P.; Greenwood, M.; Hamsher, S.E.; Miller, S.; Li, J. (2024-04-02). "Valve ultrastructure of Rhopalodia constricta (W.Smith) Krammer (Rhopalodiales, Bacillariophyceae) and a consideration of its systematic placement". Diatom Research. 39 (2): 51–60. doi:10.1080/0269249X.2024.2378769. ISSN   0269-249X.