Eric Oldfield | |
---|---|
Born | 1948 |
Citizenship | British |
Education | Bristol University (B.Sc. 1969; D.Sc. 1982) Sheffield University (Ph.D. 1972) Indiana University (Post-Doc 1972–1974) Massachusetts Institute of Technology (Visiting Scientist 1974–1975) |
Known for | NMR Spectroscopy and Drug Discovery |
Awards | The Meldola Medal, Royal Society of Chemistry The Colworth Medal, Biochemical Society Award in Pure Chemistry, American Chemical Society Award in Spectroscopy, Royal Society of Chemistry Award in Soft Matter and Biophysical Chemistry, Royal Society of Chemistry Avanti Award in Lipids, Biophysical Society Katz Basic Science Prize, American Heart Association |
Scientific career | |
Fields | Physical Chemistry, Chemical Biology, Microbiology, Parasitology |
Institutions | University of Illinois at Urbana-Champaign |
Thesis | "Spectroscopic Studies of Lipids and Biological Membranes" (1972) |
Doctoral advisor | Dennis Chapman |
Other academic advisors | Jake MacMillan Geoffrey Eglinton Adam Allerhand John S. Waugh |
Eric Oldfield (born 1948) is a British chemist, the Harriet A. Harlin Professor of Chemistry and a professor of Biophysics at the University of Illinois at Urbana-Champaign. [1] He is known for his work in nuclear magnetic resonance spectroscopy of lipids, proteins, and membranes; of inorganic solids; in computational chemistry, and in microbiology and parasitology. He has received a number of recognitions for his work, including the American Chemical Society's Award in Pure Chemistry, the Royal Society of Chemistry's Meldola Medal and the Biochemical Society's Colworth Medal, and he is a member of the American Association for the Advancement of Science, a Fellow of the Royal Society of Chemistry, and a Fellow of the American Physical Society.
Oldfield was born in London, England on May 23, 1948. He attended the University in Bristol doing research with Jake MacMillan on diterpenes and Geoffrey Eglinton on lipids and isoprenoids. He graduated with a Bachelor of Science degree in 1969. He obtained a PhD in Biophysical Chemistry from the University of Sheffield in 1972, with Dennis Chapman, developing NMR methods to study lipid and membrane structure. He worked as a Research Associate and EMBO Postdoctoral Fellow at Indiana University with Adam Allerhand, on the development of high-resolution NMR of proteins (1972–1974) [2] and was then a Visiting Scientist at MIT with John S. Waugh (1974-1975), working on solid-state NMR. [3]
Oldfield joined the Department of Chemistry at the University of Illinois at Urbana-Champaign in 1975 as an assistant Professor of Chemistry. He was promoted to associate professor in 1980 and was a Professor from 1982 to 2002. He was then an Alumni Research Professor of Chemistry from 2003 to 2013 and since then has been the Harriet A. Harlin Professor of Chemistry. He has also been a professor of biophysics in the Center for Computational Biology and Biophysics since 1995 and was a Fellow in the Center for Advanced Study in 1979, a Richard G. and Carole J. Cline University Senior Scholar in 1995, and an Associate in the Center for Advanced Study in 2000. He has authored 450 publications and as of 2023, has an h-index of 104 with 35,000 citations, according to Google Scholar [4] and holds nine issued patents from the United States Patent and Trademark Office. [5]
Oldfield is known for his research in nuclear magnetic resonance (NMR) spectroscopy, and drug discovery. His invention of deuterium and proton NMR methods led to new ways to study the structures of lipids and membranes; his carbon-13 NMR and quantum chemical developments led to new ways to investigate protein structures; his investigations of quadrupolar nuclei led to new research in materials science, geochemistry and catalysis, and his more recent research using NMR, computational and crystallographic methods has led to the development of new therapeutic approaches to treating both infectious diseases and cancer, targeting lipid biosynthesis.
In the 1970s and 1980s Oldfield developed ways to investigate lipid and membrane structure including the use of 2H nuclear magnetic resonance (NMR) spectroscopy of labelled compounds. [6] [7] This method enabled the determination of the static and dynamic structures of lipids, and how they interact with proteins and sterol molecules such as cholesterol. [8] In addition, he developed 1H and 13C magic-angle sample-spinning methods to investigate lipid membranes without the need for isotopic labeling. The magic-angle technique was not thought to be applicable to 1H NMR (due to strong dipolar interactions), but he showed that due to fast axial diffusion, these interactions were scaled and that remarkably high-resolution spectra could be obtained. [9]
In the early 1970s, while working with Adam Allerhand, Oldfield reported the first high-resolution 13C NMR spectra of proteins—lysozyme, myoglobin and cytochrome c—in which numerous single carbon atom sites could be resolved and assigned. [10] [11] The origins of the chemical shift non-equivalencies observed due to folding remained unexplained until 1993 when he showed that 13C and 15N chemical shifts in proteins could be well predicted by using quantum chemical methods. He reasoned that since the chemical shift is essentially a local phenomenon, it might be possible to compute chemical shifts just by using small peptide fragments and a “locally dense” basis set, and this turned out to be correct. [12] His early work also led to the demonstration that computed chemical shift tensors could be used in protein structure refinement. [13] Moreover, he showed that the chemical shifts of non-native species in proteins such as 19F nuclei, could be also be computed, and were due to electric field effects. [14]
Followed by the observation that chemical shifts in proteins could be computed by using quantum chemical methods, Oldfield began a series of investigations of other spectroscopic properties [15] including Mössbauer isomer shifts [16] and quadrupole splittings, [17] hyperfine shifts in metalloproteins, [18] spin-spin couplings, [19] and electric field gradients, as well as the effects of hydrogen bonding on chemical shifts. [20]
Oldfield began to investigate structures of a variety of inorganic solids in the 1980s. He showed that high-resolution spectra of quadrupolar nuclei (such as 17O, 23Na) could be obtained by using variable-angle sample-spinning, [21] spin echo, [22] as well as spectral deconvolution methods. [23] In his collaborative research with R. James Kirkpatrick, he investigated the 29Si magic-angle sample-spinning NMR spectra of a wide range of natural and synthetic silicates, [24] showing that both Si-O bond length-chemical shift and bond strength-chemical shift relationships were useful tools for investigating the structures of crystalline silicates and, more importantly, silicate glasses, clays, and zeolites that cannot be examined by single crystal X-ray or neutron diffraction methods. He also worked on investigating Pt/Ru direct methanol oxidation fuel cell catalysts using 13C and 195Pt NMR, in collaboration with A. Wieckowksi, which clarified the mechanism of enhanced CO tolerance in Pt/Ru versus pure Pt catalysts. [25]
In 1999, Oldfield shifted his research to more biomedical applications. Working in collaboration with Julio Urbina and Roberto Docampo, his group found, using 31P NMR spectroscopy, that the parasitic protozoan Trypanosoma cruzi , the causative agent of Chagas disease, contained very high levels of diphosphate, and that diphosphate analogs, bisphosphonates used clinically to treat bone resorption diseases, killed these parasites. [26] as well as others. [27] He also discovered that the bisphosphonate pamidronate cured mice of leishmaniasis [28] and proposed that farnesyl diphosphate synthase (FPPS) can be used as the target of bisphosphonate drugs [29]
Oldfield then discovered another compound that killed T. cruzi, the antiarrhythmic drug amiodarone, and that it acted synergistically with the azole drug posaconazole. [30] He then began to investigate antibacterial agents. The human pathogen Staphylococcus aureus contains a gold-colored virulence factor called staphyloxanthin that protects the bacterium from killing by reactive oxygen species. [31] Recognizing that the biosynthesis of the carotenoid pigment had similarities to the first steps in cholesterol biosynthesis, he synthesized a range of cholesterol biosynthesis inhibitors and tested them in S. aureus and in mice models of infection finding potent activity against the protein target dehydrosqualene synthase, the bacterium, and in a mice model of infection. [32] His group also showed that some drugs and drug leads that target tuberculosis bacteria function as protonophore uncouplers and in some cases they can also target isoprenoid biosynthesis, leading to potent multi-target inhibition. [33]
In 2012, Oldfield's group synthesized lipophilic analogs of the clinical bisphosphonate drugs zoledronate and risedronate, to prevent unwanted binding to bone mineral, and found they had potent anti-malarial activity. [34] Additionally, they had potent activity in a combination therapy with rapamycin in tumor cells and in mice, by targeting protein prenylation [35] with inhibition of protein prenylation also leading to activity as vaccine adjuvants. [36] Mechanistically, FPPS inhibition affects cell signaling, but it also leads to accumulation of isopentenyl diphosphate and dimethylallyl diphosphate, compounds that activate γδT cells by binding to butyrophilins in target cells [37] and this T cell activation led to tumor cell killing. [38] His group also showed that some clinically used bisphosphonate drugs are converted to analogs of adenosine triphosphate that function by inhibiting cell signaling pathways. [39]
Oldfield and his collaborators have reported the structures and mechanisms of action of many proteins involved in isoprenoid biosynthesis, focusing on the modular structures found. [40] They successfully predicted the αβγ tri-domain found in diterpene cyclases. [41] Furthermore, they used electron paramagnetic resonance and X-ray crystallography to develop the organometallic mechanism of action of the unusual 4Fe-4S proteins IspG and IspH involved in the early stages of isoprenoid biosynthesis, [42] and also used X-ray methods for providing mechanisms of action for the terpene cyclases. [43]
Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.
Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field. This re-orientation occurs with absorption of electromagnetic radiation in the radio frequency region from roughly 4 to 900 MHz, which depends on the isotopic nature of the nucleus and increased proportionally to the strength of the external magnetic field. Notably, the resonance frequency of each NMR-active nucleus depends on its chemical environment. As a result, NMR spectra provide information about individual functional groups present in the sample, as well as about connections between nearby nuclei in the same molecule. As the NMR spectra are unique or highly characteristic to individual compounds and functional groups, NMR spectroscopy is one of the most important methods to identify molecular structures, particularly of organic compounds.
Solid-state NMR (ssNMR) spectroscopy is a technique for characterizing atomic level structure in solid materials e.g. powders, single crystals and amorphous samples and tissues using nuclear magnetic resonance (NMR) spectroscopy. The anisotropic part of many spin interactions are present in solid-state NMR, unlike in solution-state NMR where rapid tumbling motion averages out many of the spin interactions. As a result, solid-state NMR spectra are characterised by larger linewidths than in solution state NMR, which can be utilized to give quantitative information on the molecular structure, conformation and dynamics of the material. Solid-state NMR is often combined with magic angle spinning to remove anisotropic interactions and improve the resolution as well as the sensitivity of the technique.
Molecular biophysics is a rapidly evolving interdisciplinary area of research that combines concepts in physics, chemistry, engineering, mathematics and biology. It seeks to understand biomolecular systems and explain biological function in terms of molecular structure, structural organization, and dynamic behaviour at various levels of complexity. This discipline covers topics such as the measurement of molecular forces, molecular associations, allosteric interactions, Brownian motion, and cable theory. Additional areas of study can be found on Outline of Biophysics. The discipline has required development of specialized equipment and procedures capable of imaging and manipulating minute living structures, as well as novel experimental approaches.
The residual dipolar coupling between two spins in a molecule occurs if the molecules in solution exhibit a partial alignment leading to an incomplete averaging of spatially anisotropic dipolar couplings.
Adriaan "Ad" Bax is a Dutch-American molecular biophysicist. He was born in the Netherlands and is the Chief of the Section on Biophysical NMR Spectroscopy at the National Institutes of Health. He is known for his work on the methodology of biomolecular NMR spectroscopy. He is a corresponding member of the Royal Netherlands Academy of Arts and Sciences, a member of the National Academy of Sciences, a fellow of the American Academy of Arts and Sciences, and a Foreign Member of the Royal Society.
Squalene synthase (SQS) or farnesyl-diphosphate:farnesyl-diphosphate farnesyl transferase is an enzyme localized to the membrane of the endoplasmic reticulum. SQS participates in the isoprenoid biosynthetic pathway, catalyzing a two-step reaction in which two identical molecules of farnesyl pyrophosphate (FPP) are converted into squalene, with the consumption of NADPH. Catalysis by SQS is the first committed step in sterol synthesis, since the squalene produced is converted exclusively into various sterols, such as cholesterol, via a complex, multi-step pathway. SQS belongs to squalene/phytoene synthase family of proteins.
Lanosterol synthase (EC 5.4.99.7) is an oxidosqualene cyclase (OSC) enzyme that converts (S)-2,3-oxidosqualene to a protosterol cation and finally to lanosterol. Lanosterol is a key four-ringed intermediate in cholesterol biosynthesis. In humans, lanosterol synthase is encoded by the LSS gene.
Herbert Sander Gutowsky was an American chemist who was a professor of chemistry at the University of Illinois Urbana-Champaign. Gutowsky was the first to apply nuclear magnetic resonance (NMR) methods to the field of chemistry. He used nuclear magnetic resonance spectroscopy to determine the structure of molecules. His pioneering work developed experimental control of NMR as a scientific instrument, connected experimental observations with theoretical models, and made NMR one of the most effective analytical tools for analysis of molecular structure and dynamics in liquids, solids, and gases, used in chemical and medical research, His work was relevant to the solving of problems in chemistry, biochemistry, and materials science, and has influenced many of the subfields of more recent NMR spectroscopy.
Diphosphomevalonate decarboxylase (EC 4.1.1.33), most commonly referred to in scientific literature as mevalonate diphosphate decarboxylase, is an enzyme that catalyzes the chemical reaction
In enzymology, a geranyltranstransferase is an enzyme that catalyzes the chemical reaction
Nuclear magnetic resonance crystallography is a method which utilizes primarily NMR spectroscopy to determine the structure of solid materials on the atomic scale. Thus, solid-state NMR spectroscopy would be used primarily, possibly supplemented by quantum chemistry calculations, powder diffraction etc. If suitable crystals can be grown, any crystallographic method would generally be preferred to determine the crystal structure comprising in case of organic compounds the molecular structures and molecular packing. The main interest in NMR crystallography is in microcrystalline materials which are amenable to this method but not to X-ray, neutron and electron diffraction. This is largely because interactions of comparably short range are measured in NMR crystallography.
Food physical chemistry is considered to be a branch of Food chemistry concerned with the study of both physical and chemical interactions in foods in terms of physical and chemical principles applied to food systems, as well as the applications of physical/chemical techniques and instrumentation for the study of foods. This field encompasses the "physiochemical principles of the reactions and conversions that occur during the manufacture, handling, and storage of foods."
Joachim Heinrich Seelig is a German physical chemist and specialist in NMR Spectroscopy. He is one of the founding fathers of the Biozentrum of the University of Basel. He reached emeritus status in 2012.
Protein chemical shift prediction is a branch of biomolecular nuclear magnetic resonance spectroscopy that aims to accurately calculate protein chemical shifts from protein coordinates. Protein chemical shift prediction was first attempted in the late 1960s using semi-empirical methods applied to protein structures solved by X-ray crystallography. Since that time protein chemical shift prediction has evolved to employ much more sophisticated approaches including quantum mechanics, machine learning and empirically derived chemical shift hypersurfaces. The most recently developed methods exhibit remarkable precision and accuracy.
Gareth Alun Morris FRS is a Professor of Physical Chemistry, in the School of Chemistry at the University of Manchester.
G. Marius Clore MAE, FRSC, FMedSci, FRS is a British-born, American molecular biophysicist and structural biologist. He was born in London, U.K. and is a dual U.S./U.K. Citizen. He is a Member of the National Academy of Sciences, a Fellow of the Royal Society, a NIH Distinguished Investigator, and the Chief of the Molecular and Structural Biophysics Section in the Laboratory of Chemical Physics of the National Institute of Diabetes and Digestive and Kidney Diseases at the U.S. National Institutes of Health. He is known for his foundational work in three-dimensional protein and nucleic acid structure determination by biomolecular NMR spectroscopy, for advancing experimental approaches to the study of large macromolecules and their complexes by NMR, and for developing NMR-based methods to study rare conformational states in protein-nucleic acid and protein-protein recognition. Clore's discovery of previously undetectable, functionally significant, rare transient states of macromolecules has yielded fundamental new insights into the mechanisms of important biological processes, and in particular the significance of weak interactions and the mechanisms whereby the opposing constraints of speed and specificity are optimized. Further, Clore's work opens up a new era of pharmacology and drug design as it is now possible to target structures and conformations that have been heretofore unseen.
Mei Hong is a Chinese-American biophysical chemist and professor of chemistry at the Massachusetts Institute of Technology. She is known for her creative development and application of solid-state nuclear magnetic resonance (ssNMR) spectroscopy to elucidate the structures and mechanisms of membrane proteins, plant cell walls, and amyloid proteins. She has received a number of recognitions for her work, including the American Chemical Society Nakanishi Prize in 2021, Günther Laukien Prize in 2014, the Protein Society Young Investigator award in 2012, and the American Chemical Society’s Pure Chemistry award in 2003.
Bisphosphonates are an important class of drugs originally commercialised in the mid to late 20th century. They are used for the treatment of osteoporosis and other bone disorders that cause bone fragility and diseases where bone resorption is excessive. Osteoporosis is common in post-menopausal women and patients in corticosteroid treatment where biphosphonates have been proven a valuable treatment and also used successfully against Paget's disease, myeloma, bone metastases and hypercalcemia. Bisphosphonates reduce breakdown of bones by inhibiting osteoclasts, they have a long history of use and today there are a few different types of bisphosphonate drugs on the market around the world.
Alfred G. Redfield was an American physicist and biochemist. In 1955 he published the Redfield relaxation theory, effectively moving the practice of NMR or Nuclear magnetic resonance from the realm of classical physics to the realm of semiclassical physics. He continued to find novel magnetic resonance applications to solve real-world problems throughout his life.
{{cite journal}}
: Cite journal requires |journal=
(help)