Exponential integrators are a class of numerical methods for the solution of ordinary differential equations, specifically initial value problems. This large class of methods from numerical analysis is based on the exact integration of the linear part of the initial value problem. Because the linear part is integrated exactly, this can help to mitigate the stiffness of a differential equation. Exponential integrators can be constructed to be explicit or implicit for numerical ordinary differential equations or serve as the time integrator for numerical partial differential equations.
Dating back to at least the 1960s, these methods were recognized by Certaine [1] and Pope. [2] As of late exponential integrators have become an active area of research, see Hochbruck and Ostermann (2010). [3] Originally developed for solving stiff differential equations, the methods have been used to solve partial differential equations including hyperbolic as well as parabolic problems [4] such as the heat equation.
We consider initial value problems of the form,
where is composed of linear terms, and is composed of the non-linear terms. These problems can come from a more typical initial value problem
after linearizing locally about a fixed or local state :
Here, refers to the partial derivative of with respect to (the Jacobian of f).
Exact integration of this problem from time 0 to a later time can be performed using matrix exponentials to define an integral equation for the exact solution: [3]
This is similar to the exact integral used in the Picard–Lindelöf theorem. In the case of , this formulation is the exact solution to the linear differential equation.
Numerical methods require a discretization of equation (2). They can be based on Runge-Kutta discretizations, [5] [6] [7] linear multistep methods or a variety of other options.
Exponential Rosenbrock methods were shown to be very efficient in solving large systems of stiff ordinary differential equations, usually resulted from spatial discretization of time dependent (parabolic) PDEs. These integrators are constructed based on a continuous linearization of (1) along the numerical solution
where This procedure enjoys the advantage, in each step, that This considerably simplifies the derivation of the order conditions and improves the stability when integrating the nonlinearity . Again, applying the variation-of-constants formula (2) gives the exact solution at time as
The idea now is to approximate the integral in (4) by some quadrature rule with nodes and weights (). This yields the following class of explicit exponential Rosenbrock methods, see Hochbruck and Ostermann (2006), Hochbruck, Ostermann and Schweitzer (2009):
with . The coefficients are usually chosen as linear combinations of the entire functions , respectively, where
These functions satisfy the recursion relation
By introducing the difference , they can be reformulated in a more efficient way for implementation (see also [3] ) as
In order to implement this scheme with adaptive step size, one can consider, for the purpose of local error estimation, the following embedded methods
which use the same stages but with weights .
For convenience, the coefficients of the explicit exponential Rosenbrock methods together with their embedded methods can be represented by using the so-called reduced Butcher tableau as follows:
Moreover, it is shown in Luan and Ostermann (2014a) [8] that the reformulation approach offers a new and simple way to analyze the local errors and thus to derive the stiff order conditions for exponential Rosenbrock methods up to order 5. With the help of this new technique together with an extension of the B-series concept, a theory for deriving the stiff order conditions for exponential Rosenbrock integrators of arbitrary order has been finally given in Luan and Ostermann (2013). [9] As an example, in that work the stiff order conditions for exponential Rosenbrock methods up to order 6 have been derived, which are stated in the following table:
Here denote arbitrary square matrices.
The stability and convergence results for exponential Rosenbrock methods are proved in the framework of strongly continuous semigroups in some Banach space.
All the schemes presented below fulfill the stiff order conditions and thus are also suitable for solving stiff problems.
The simplest exponential Rosenbrock method is the exponential Rosenbrock–Euler scheme, which has order 2, see, for example Hochbruck et al. (2009):
A class of third-order exponential Rosenbrock methods was derived in Hochbruck et al. (2009), named as exprb32, is given as:
exprb32:
1 | ||
0 |
which reads as
where
For a variable step size implementation of this scheme, one can embed it with the exponential Rosenbrock–Euler:
Cox and Matthews [5] describe a fourth-order method exponential time differencing (ETD) method that they used Maple to derive.
We use their notation, and assume that the unknown function is , and that we have a known solution at time . Furthermore, we'll make explicit use of a possibly time dependent right hand side: .
Three stage values are first constructed:
The final update is given by,
If implemented naively, the above algorithm suffers from numerical instabilities due to floating point round-off errors. [10] To see why, consider the first function,
which is present in the first-order Euler method, as well as all three stages of ETDRK4. For small values of , this function suffers from numerical cancellation errors. However, these numerical issues can be avoided by evaluating the function via a contour integral approach [10] or by a Padé approximant. [11]
Exponential integrators are used for the simulation of stiff scenarios in scientific and visual computing, for example in molecular dynamics, [12] for VLSI circuit simulation, [13] [14] and in computer graphics. [15] They are also applied in the context of hybrid monte carlo methods. [16] In these applications, exponential integrators show the advantage of large time stepping capability and high accuracy. To accelerate the evaluation of matrix functions in such complex scenarios, exponential integrators are often combined with Krylov subspace projection methods.
The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.
In mathematics, a linear form is a linear map from a vector space to its field of scalars.
In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = n − p is called its codimension.
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by Dingle (1973) revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.
In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.
In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.
In mathematics, a stiff equation is a differential equation for which certain numerical methods for solving the equation are numerically unstable, unless the step size is taken to be extremely small. It has proven difficult to formulate a precise definition of stiffness, but the main idea is that the equation includes some terms that can lead to rapid variation in the solution.
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).
In operator theory, a bounded operator T: X → Y between normed vector spaces X and Y is said to be a contraction if its operator norm ||T || ≤ 1. This notion is a special case of the concept of a contraction mapping, but every bounded operator becomes a contraction after suitable scaling. The analysis of contractions provides insight into the structure of operators, or a family of operators. The theory of contractions on Hilbert space is largely due to Béla Szőkefalvi-Nagy and Ciprian Foias.
In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations. They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications. DG methods have in particular received considerable interest for problems with a dominant first-order part, e.g. in electrodynamics, fluid mechanics and plasma physics. Indeed, the solutions of such problems may involve strong gradients (and even discontinuities) so that classical finite element methods fail, while finite volume methods are restricted to low order approximations.
In the finite element method for the numerical solution of elliptic partial differential equations, the stiffness matrix is a matrix that represents the system of linear equations that must be solved in order to ascertain an approximate solution to the differential equation.
In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point, in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals.
Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.
In mathematics, and especially algebraic geometry, a Bridgeland stability condition, defined by Tom Bridgeland, is an algebro-geometric stability condition defined on elements of a triangulated category. The case of original interest and particular importance is when this triangulated category is the derived category of coherent sheaves on a Calabi–Yau manifold, and this situation has fundamental links to string theory and the study of D-branes.
In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.
In stochastic calculus, the Ogawa integral, also called the non-causal stochastic integral, is a stochastic integral for non-adapted processes as integrands. The corresponding calculus is called non-causal calculus in order to distinguish it from the anticipating calculus of the Skorokhod integral. The term causality refers to the adaptation to the natural filtration of the integrator.
A nonlinear dispersion relation (NDR) is a dispersion relation that assigns the correct phase velocity to a nonlinear wave structure. As an example of how diverse and intricate the underlying description can be, we deal with plane electrostatic wave structures which propagate with in a collisionless plasma. Such structures are ubiquitous, for example in the magnetosphere of the Earth, in fusion reactors or in the laboratory. Correct means that this must be done according to the governing equations, in this case the Vlasov-Poisson system, and the conditions prevailing in the plasma during the wave formation process. This means that special attention must be paid to the particle trapping processes acting on the resonant electrons and ions, which requires phase space analyses. Since the latter is stochastic, transient and rather filamentary in nature, the entire dynamic trapping process eludes mathematical treatment, so that it can be adequately taken into account “only” in the asymptotic, quiet regime of wave generation, when the structure is close to equilibrium.