Extreme pressure additives, or EP additives, are additives for lubricants with a role to decrease wear of the parts of the gears exposed to very high pressures. They are also added to cutting fluids for machining of metals. [1]
Extreme pressure additives are usually used in applications such as gearboxes, while antiwear additives are used with lighter load applications such as hydraulic and automotive engines.
Extreme pressure gear oils perform well over a range of temperatures, speeds and gear sizes to help prevent damage to the gears during starting and stopping of the engine. Unlike antiwear additives, extreme pressure additives are rarely used in motor oils. The sulfur or chlorine compounds contained in them can react with water and combustion byproducts, forming acids that facilitate corrosion of the engine parts and bearings. [2]
Extreme pressure additives typically contain organic sulfur, phosphorus or chlorine compounds, including sulfur-phosphorus and sulfur-phosphorus-boron compounds, which chemically react with the metal surface under high pressure conditions. Under such conditions, small irregularities on the sliding surfaces cause localized flashes of high temperature (300-1000 °C), without significant increase of the average surface temperature. The chemical reaction between the additives and the surface is confined to this area.
The early extreme pressure additives were based on lead salts of fatty acids ("lead soaps"), "active sulfur" compounds (e.g. thiols and elementary sulfur), and chlorinated compounds. During the 1950s the use of lead soaps was eliminated and replaced by zinc and phosphorus compounds such as zinc dithiophosphate. [3]
Some of the EP additives are:
Aliphatic chlorinated hydrocarbons (chlorinated paraffins) are cheap and efficient, however they persist in environment and have strong tendency for bioaccumulation. Therefore, they are being replaced with alternatives. In cutting fluids, their role is largely confined to formulations for forming complex stainless steel parts.
The activity of halogenated hydrocarbons increases with decreasing stability of the carbon-halogen bond. At local contact temperatures ranging between 305-330 °C, the additive thermally decomposes and the reactive halogen atoms form a surface layer of iron halides on the part surface. Eventual failure of the contact point comes when the contact temperature exceeds the melting point of the iron halide layer. Under such conditions, small particles of carbon are generated as well. Some compounds used in lubricant additives are chloroalkanes, trichloromethyl phosphine acids, organic esters of a-acetoxy-b,b,b-trichloroethyl phosphonic acid, trichloromethyl esters of phosphoric acid, trichloromethyl derivates of sulfur, trichloroacetoxy compounds, esters or amine salts of chlorendic acid, 1,2,3,4,7,7-hexachloro-5-dimethylbicyclo[2.2.1]-2-heptene, etc.
Oil-soluble organophosphates, with or without zinc, have excellent high-pressure and antiwear properties, and provide corrosion protection especially in presence of chlorinated hydrocarbons. Zinc dialkyldithiophosphates (ZDDP) start decomposing at 130-170 °C, while the activation temperature of tricresyl phosphate (TCP) typically exceeds 200 °C. Their reaction products form a chemically bonded lubricating film on the surfaces.
Polysulfides serve as carriers of inactive and active sulfur.
Molybdenum compounds decompose under high pressure to form an in-situ deposited layer of molybdenum disulfide. Molybdenum dithiocarbamates are used as additives for greases.
Sulfur containing extreme pressure additives can cause corrosion problems in gears with parts made of bronze, brass and other copper alloy when high temperature environments are encountered.
A lubricant is a substance that helps to reduce friction between surfaces in mutual contact, which ultimately reduces the heat generated when the surfaces move. It may also have the function of transmitting forces, transporting foreign particles, or heating or cooling the surfaces. The property of reducing friction is known as lubricity.
Waxes are a diverse class of organic compounds that are lipophilic, malleable solids near ambient temperatures. They include higher alkanes and lipids, typically with melting points above about 40 °C (104 °F), melting to give low viscosity liquids. Waxes are insoluble in water but soluble in nonpolar organic solvents such as hexane, benzene and chloroform. Natural waxes of different types are produced by plants and animals and occur in petroleum.
Motor oil, engine oil, or engine lubricant is any one of various substances used for the lubrication of internal combustion engines. They typically consist of base oils enhanced with various additives, particularly antiwear additives, detergents, dispersants, and, for multi-grade oils, viscosity index improvers. The main function of motor oil is to reduce friction and wear on moving parts and to clean the engine from sludge and varnish (detergents). It also neutralizes acids that originate from fuel and from oxidation of the lubricant (detergents), improves the sealing of piston rings, and cools the engine by carrying heat away from moving parts.
In metallurgy, a flux is a chemical reducing agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.
Synthetic oil is a lubricant consisting of chemical compounds that are artificially modified or synthesised. Synthetic lubricants can be manufactured using chemically modified petroleum components rather than whole crude oil, but can also be synthesized from other raw materials. The base material, however, is still overwhelmingly crude oil that is distilled and then modified physically and chemically. The actual synthesis process and composition of additives is generally a commercial trade secret and will vary among producers.
In chemistry, halogenation is a chemical reaction which introduces one or more halogens into a chemical compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens. Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.
In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.
Gear oil is a lubricant made specifically for transmissions, transfer cases, and differentials in automobiles, trucks, and other machinery. It has high viscosity and usually contains organosulfur compounds. Some modern automatic transaxles do not use a heavy oil at all but lubricate with the lower viscosity hydraulic fluid, which is available at pressure within the automatic transmission. Gear oils account for about 20% of the lubricant market.
A corrosion inhibitor or anti-corrosive is a chemical compound added to a liquid or gas to decrease the corrosion rate of a metal that comes into contact with the fluid. The effectiveness of a corrosion inhibitor depends on fluid composition and dynamics. Corrosion inhibitors are common in industry, and also found in over-the-counter products, typically in spray form in combination with a lubricant and sometimes a penetrating oil. They may be added to water to prevent leaching of lead or copper from pipes.
Grease is a solid or semisolid lubricant formed as a dispersion of thickening agents in a liquid lubricant. Grease generally consists of a soap emulsified with mineral or vegetable oil.
AW additives, or antiwear additives, are additives for lubricants to prevent metal-to-metal contact between parts of gears.
Chlorendic acid, or 1,4,5,6,7,7-hexachlorobicyclo[2.2.1]-hept-5-ene-2,3-dicarboxylic acid, is a chlorinated carboxylic acid used in the synthesis of some flame retardants and polymers. It is a common breakdown product of several organochlorine insecticides.
Zinc dialkyldithiophosphates are a family of coordination compounds developed in the 1940s that feature zinc bound to the anion of a dialkyldithiophosphoric salt. These uncharged compounds are not salts. They are soluble in nonpolar solvents, and the longer-chain derivatives easily dissolve in mineral and synthetic oils used as lubricants. They come under CAS number
. In aftermarket oil additives, the percentage of ZDDP ranges approximately between 2 and 15%. Zinc dithiophosphates have many names, including ZDDP, ZnDTP, and ZDP.Magnesium compounds are compounds formed by the element magnesium (Mg). These compounds are important to industry and biology, including magnesium carbonate, magnesium chloride, magnesium citrate, magnesium hydroxide, magnesium oxide, magnesium sulfate, and magnesium sulfate heptahydrate.
Friction modifiers are added to lubricants in order to reduce friction and wear in machine components. They are particularly important in the boundary lubrication regime, where they can prevent solid surfaces from coming into direct contact, substantially reducing friction and wear.
Oil additives are chemical compounds that improve the lubricant performance of base oil. The manufacturer of many oils can use the same base stock for each formulation and can choose different additives for each use. Additives comprise up to 5% by weight of some oils.
Dry lubricants or solid lubricants are materials that, despite being in the solid phase, are able to reduce friction between two surfaces sliding against each other without the need for a liquid oil medium.
Automotive oil recycling involves the recycling of used oils and the creation of new products from the recycled oils, and includes the recycling of motor oil and hydraulic oil. Oil recycling also benefits the environment: increased opportunities for consumers to recycle oil lessens the likelihood of used oil being dumped on lands and in waterways. For example, one gallon of motor oil dumped into waterways has the potential to pollute one million gallons of water.
Dimethyl disulfide (DMDS) is an organic chemical compound with the molecular formula CH3SSCH3. It is a flammable liquid with an unpleasant, garlic-like odor. The compound is colorless although impure samples often appear yellowish.
Transition metal dithiocarbamate complexes are coordination complexes containing one or more dithiocarbamate ligand, which are typically abbreviated R2dtc−. Many complexes are known. Several homoleptic derivatives have the formula M(R2dtc)n where n = 2 and 3.