Fluctuating asymmetry

Last updated
Bilateral features in the face and body, such as left and right eyes, ears, lips, wrists and thighs, often show some extent of fluctuating asymmetry. Some individuals show greater asymmetry than others. Caesius facial composite.jpg
Bilateral features in the face and body, such as left and right eyes, ears, lips, wrists and thighs, often show some extent of fluctuating asymmetry. Some individuals show greater asymmetry than others.

Fluctuating asymmetry (FA), is a form of biological asymmetry, along with anti-symmetry and direction asymmetry. Fluctuating asymmetry refers to small, random deviations away from perfect bilateral symmetry. [1] [2] This deviation from perfection is thought to reflect the genetic and environmental pressures experienced throughout development, with greater pressures resulting in higher levels of asymmetry. [1] Examples of FA in the human body include unequal sizes (asymmetry) of bilateral features in the face and body, such as left and right eyes, ears, wrists, breasts, testicles, and thighs.

Contents

Research has exposed multiple factors that are associated with FA. As measuring FA can indicate developmental stability, it can also suggest the genetic fitness of an individual. This can further have an effect on mate attraction and sexual selection, as less asymmetry reflects greater developmental stability and subsequent fitness. [3] Human physical health is also associated with FA. For example, young men with greater FA report more medical conditions than those with lower levels of FA. [4] Multiple other factors can be linked to FA, such as intelligence [3] and personality traits. [5]

Measurement

Fluctuating asymmetry (FA) can be measured by the equation: Mean FA = mean absolute value of left sides - mean absolute value of right sides.

The closer the mean value is to zero, the lower the levels of FA, indicating more symmetrical features. By taking many measurements of multiple traits per individual, this increases the accuracy in determining that individual's developmental stability. However, these traits must be chosen carefully, as different traits are affected by different selection pressures. [6]

This equation can further be used to study the distribution of asymmetries at population levels, to distinguish between traits that show FA, directional asymmetry, and anti-symmetry. [7] [8] The distribution of FA around a mean point of zero suggests that FA is not an adaptive trait, where symmetry is ideal. Directional asymmetry of traits can be distinguished by showing significantly biased measurements towards traits being larger on either the left or right sides, for example, human testicles (where the right is more commonly larger), or handedness (85% are right handed, 15% are left handed). Anti-symmetry can be distinguished by the bimodal distributions, due to some adaptive functions.

Causes

Fluctuating asymmetry (FA) is often considered to be the product of developmental stress and instability, caused by both genetic and environmental stressors. The notion that FA is a result of genetic and environmental factors is supported by Waddington's notion of canalisation, which implies that FA is a measure of the genome's ability to successfully buffer development to achieve a normal phenotype under imperfect environmental conditions. [9] Various factors causing developmental instability and FA include infections, mutations, and toxins. [3]

Genetic factors

Research on twins suggests that there are genetic influences on FA, [10] and increased levels of mutations and perturbations is also linked to greater asymmetry. [3]

FA may also result from a lack of genetic immunity to diseases, as those with higher FA show less effective immune responses. [11] This is further supported by evidence showing an association between FA and the number of respiratory infections experienced by an individual, such that those with higher levels of FA experience more infections. [3] Increased prevalence of parasites and diseases in an organism is also seen more in individuals with greater levels of FA. [11] However, the research in this field is predominantly correlational, so caution must be taken when inferring causation. For example, rather than a lack of immunity causing FA, FA may weaken the immune responses of an organism, or there may be another factor involved.

There is some speculation that inbreeding contributes towards FA. One study on ants demonstrated that, although inbred individuals show more asymmetry in observed bilateral traits, the differences were not significant. [12] Furthermore, ant colonies created by an inbreeding queen do not show significantly higher FA than those produced by a non-inbreeding queen. [13]

Environmental factors

Multiple sources provide information on environmental factors that are correlated with FA. A meta-analysis of related studies suggests that FA is an appropriate marker of environmental stress during development. [14]

Some evidence suggests that poverty and lack of food during development may contribute to greater levels of FA. [15] [16] Infectious diseases can also lead to FA, as studies have repeatedly shown that those with higher FA report more infections. [3] [17] Alternatively, this association between levels of FA and infections may be due to a lack of immunity to diseases, as mentioned earlier (see 'Genetic factors'). Fluctuating asymmetry in human males is also seen to positively correlate with levels of oxidative stress. This process occurs when an organism creates excess reactive oxygen species (ROS) compared to ROS-neutralising antioxidants. [18] Oxidative stress may mediate the association seen between high FA and infection amounts during development. [3]

Toxins and poisons are considered to increase FA. Pregnancy sickness is argued to be an adaptation for avoiding toxins during foetal development. Research has reported that when a mother has no sickness or a sickness that extends beyond week 12 of gestation, the offspring shows higher FA (as demonstrated by measuring thigh circumferences). This suggests that when a mother fails to expel environmental toxins, this creates stress and developmental instability for the foetus, later leading to increased asymmetry in that individual. [19] Greater exposure to pollution may also be a fundamental cause of FA. Research on skull characteristics of Baltic grey seals (Halichoerus grypus) demonstrated that those born after 1960 (marking an increase in environmental pollution) had increased levels of asymmetry. [20] Also, shrews (Crocidura russula) from more polluted areas show higher levels of asymmetry. [21] Radioactive contamination may also increase FA levels, as mice (Apodemus flavicollis) living closer to the failed Chernobyl reactor show greater asymmetry. [22]

Developmental stability

Developmental stability is achieved when an organism is able to withstand genetic and environmental stress, to display the bilaterally symmetrical traits determined by its developmentally programmed phenotype. [1] [23] To measure an individual's developmental stability, the FA measurements of 10 traits are added together, including ear width, elbows, ankles, wrists, feet, length of ears and fingers. This is achieved by: (L - R)trait 1 + (L - R)trait 2 + ......(L - R)trait 10. This provides a good overall measure of body FA, as every individual has some features that are not perfectly symmetrical.

Common environmental pressures leading to lower developmental stability include exposure to toxins, poison and infectious diseases, low food quality and malnutrition. Genetic pressures include spontaneous new mutations, and "bad genes" (genes that once had adaptive functions, but are being removed through evolutionary selection). A large fluctuating asymmetry (FA) and a low developmental stability suggests that an organism is unable to develop according to the ideal state of bilateral symmetry. The energy required for bilateral symmetry development is extremely high, making fully perfect bilateral symmetry functionally nonexistent in natural organic creatures. Energy is invested into survival in spite of the genetic and environmental pressures, before making bilaterally symmetrical traits. Research has also revealed links between FA and depression, genetic or environmental stress and measures of mate quality for sexual selection. [24] [25] [26] [27]

Health

Susceptibility to diseases

Research has linked higher levels of fluctuating asymmetry (FA) to poorer outcomes in some domains of physical health in humans. For example, one study found that individuals with higher levels of FA report a higher number of medical conditions than those with lower levels of FA. However, they did not experience worse outcomes in areas such as systolic blood pressure or cholesterol levels. [4] Higher levels of FA have also been linked to higher body mass index (BMI) in women, [4] and lower BMI in men. [28] Research has shown that both men and women with higher levels of FA, both facial and bodily, report a higher number of respiratory infections and a higher number of days ill, compared to men and women with lower levels of FA. [29] In men, higher levels of FA have been linked to lower levels of physical attractiveness and higher levels of oxidative stress, regardless of smoking or levels of toxin exposure. [30] There is no gender difference in the susceptibility of diseases depending on body FA. [31]

A large-scale review of the human and non-human literature by Møller found that higher levels of fluctuating asymmetry were linked to increased vulnerability to parasites, and also to lower levels of immunity to disease. [32] A large-scale longitudinal study in Britain found that facial FA was not associated with poorer health over the course of childhood, which was interpreted as suggesting smaller effects of FA in Western societies with generally low levels of FA [33] A review of the relationship between various attractiveness features and health in Western societies produced similar results, finding that symmetry was not related to health in either sex, but was related to attractiveness in males. [34]

Health-risk behaviours

It has been suggested that individuals with lower levels of FA may engage in more biologically costly behaviours such as recreational drug use [35] and risky body modifications such as piercings and tattoos. [36] These ideas have been proposed in the context of Zahavi's handicap principle, which argues that highly costly behaviours or traits serve as signals of an organism's genetic quality. [37] The relationship between FA and behaviours with high health risks has received mixed support. Individuals with body piercings and tattoos (which increase risk of blood-borne infections) have been shown to have lower levels of FA, [36] but individuals with lower FA do not engage in any more recreational drug use than those with higher FA levels. [35]

Mental health in humans

Higher levels of FA have been linked to higher levels of some mental health difficulties. For instance, it has been shown that, among university students, higher FA is associated with higher levels of schizotypy. [38] Depression scores have been found to be higher in men, but not women, with higher levels of FA. [39] One study by Shackelford and Larsen found that men and women with higher facial asymmetry reported more physiological complaints than those with lower facial asymmetry, and that both men and women with higher asymmetry experienced higher levels of psychological distress overall. For example, men with higher facial asymmetry experienced higher levels of depression compared to men with lower facial asymmetry. [40] Fluctuating asymmetry has also been studied in relation to psychopathy. One study looking at offenders and non-offenders found that, although offenders had higher levels of FA overall, psychopathic offenders had lower levels of FA compared to offenders who did not meet the criteria for psychopathy. Additionally, offenders with the highest levels of psychopathy were found to have similar levels of FA to non-offenders. [41]

Other health issues in humans

Research has also linked FA to conditions such as lower back pain, although the evidence is mixed. While one study found no notable link between pelvic asymmetry and lower back pain, [42] other studies have found pelvic asymmetry (as well as FA in other traits not directly related to pelvic function) to be higher in patients experiencing lower back pain, [43] and higher levels of FA have also been linked to congenital spinal problems. [44] Studies have also shown increased levels of FA of ear length in individuals with cleft lip and/or non-syndromic cleft palate syndrome. [45] [46] [47]

Physical fitness in humans

In addition to general health and susceptibility to disease, research has also studied the link between FA and physical fitness. Research has found that lower levels of lower-body FA is associated with faster running speeds in Jamaican sprinters, [48] and individuals with greater body asymmetry have been shown to move more asymmetrically while running, although do not experience higher metabolic costs than more symmetrical individuals. [49] It has also been shown that children with lower levels of lower-body FA have faster sprinting speeds and are more willing to sprint when followed up in adulthood. [50]

Health in non-human populations

The relationship between FA, health and susceptibility to disease has also been studied in non-human animals. For example, studies have found that higher levels of facial asymmetry are associated with poorer overall health in female rhesus macaques (Macaca mulatta), [51] and that higher FA is also linked to more health issues in chimpanzees (Pan troglodytes). [52]

The link between FA and health has also been investigated in non-primates. In three gazelle species (Gazella cuvieri; Gazella dama; Gazella dorcas), for instance, FA has been linked to a range of blood parameters associated with health in mammals, although the specific relevance of these blood parameters for these gazelle species was not examined. [53] It has also been found that, among Iberian red deer (Cervus elaphus hispanicus), higher FA was slightly negatively related to both antler size and overall body mass (traits thought to indicate overall condition). Antlers more involved in fighting were found to be more symmetrical than those not involved, and antler asymmetry at reproductive age was lower than in development or at post-reproductive age. [54]

FA and health outcomes have been examined within insect populations. For instance, it has been found that Mediterranean field crickets (Gryllus bimaculatus) with higher levels of FA in three hind-limb traits have lower encapsulation rates, but do not differ from low-FA crickets in lytic activity (both are measures of immunocompetence). [55] While research on the relationship between FA and longevity is sparse in humans, some studies using non-human populations have suggested an association between the symmetry of an organism and its lifespan. For instance, it has been found that flies whose wing veins showed more bilateral symmetry live longer than less symmetrical flies. This difference was greatest for male flies. [56]

In sexual selection

Mate attraction

Symmetry has been shown to affect physical attractiveness. [57] Those with lower levels of fluctuating asymmetry (FA) are often rated as more attractive. [58] Various studies have supported this. The relationship between FA and mate attraction has been studied in both males and females. As FA reflects developmental stability and quality, it has been suggested that we prefer those as more attractive/with low FA because it signals traits such as health and intelligence. [59]

Research has shown that the female partners of men with lower levels of FA experience a higher number of copulatory orgasms, compared to the female partners of males with higher levels of FA. [60] Other studies have also found that the voices of men and women with low fluctuating asymmetry are rated as more attractive, [61] [62] suggesting that voice may be indicative of developmental stability. Research has shown attractiveness ratings of men's scent are negatively correlated with FA, but FA is unrelated to attractiveness ratings for women's scent, and women's preferences for the scent of more symmetric men appears limited to the most fertile phases of the menstrual cycle. [63] However, research has failed to find changes in women's preferences for low FA across the menstrual cycle when assessing pictures of faces, as opposed to scents. [64] Facial symmetry has been positively correlated with higher occurrences of mating. [65] Also, one study used 3-D scans of male and female bodies, and showed videos of these scans to a group of individuals who rated the bodies on attractiveness. It was found that, for both males and females, lower levels of FA were associated with higher attractiveness ratings. It was also found that sex-typical joint configurations were rated as more attractive and linked to lower FA in men, but not women. [66] Men with higher FA have been shown to have higher levels of oxidative stress and lower levels of attractiveness. [30] Research has also provided evidence that FA is linked to extra-pair copulation, as women have been shown to prefer men with lower levels of FA as extra-pair partners. [67] However, the literature is mixed regarding the relationship between attractiveness and FA. For example, in one study, altering images of faces to in a way that reduced asymmetry led to observers rating such faces as less, rather than more, attractive. [68] Research by Van Dongen also found FA to be unrelated to attractiveness, physical strength and level of masculinity in both men and women. [69]

Reduced FA in Japanese scorpionflies (Panorpa japonica) is linked to fighting and mating success. Panorpa japonica1.jpg
Reduced FA in Japanese scorpionflies (Panorpa japonica) is linked to fighting and mating success.

Sexual selection in non-human animals

Many non-human animals have been shown to be able to distinguish between potential partners, based upon levels of FA. As with humans, lower levels of FA are seen in the most reproductively successful members of species. For instance, FA of male forewing length seem to have an important role in successful mating for many insect species, such as dark-wing damselflies and Japanese scorpionflies. In the dark-winged damselfly (Calopteryx maculate), successfully mating male flies showed significantly lower levels of FA in their forewings than unsuccessful males, [70] while for Japanese scorpionflies, FA levels are a good predictor for the outcome of fights between males in that more symmetrical males won significantly more fights. [71] Other animals also show similar patterns, for example, many species of butterfly, males with lower levels of FA tended to live longer and flew more actively, allowing them to have more reproductive success. [72] Also, female swallows have been shown to prefer longer, and more symmetrical tails as a cue for mate choice. Therefore, the males with longer and more symmetrical tails show higher levels of reproductive success with more attractive females. [73] In red deer, sexual selection has affected antler development, in that larger and more symmetrical antlers are favoured in males at prime mating age. [74]

However, some evidence for the effects of sexual selection of FA levels have been inconsistent, suggesting that the relationship between FA and sexual selection may be more complex than originally thought. For instance, in the lekking black grouse and red junglefowl, no correlations were found between FA and mating success. [75] [76] Furthermore, when manipulating paradise whydahs' tails to be more and less symmetrical, females showed no preferences for more symmetrical tails (but they did show preferences for longer tails). [77]

Other associated factors

Intelligence

Through research, fluctuating asymmetry (FA) has been found to have a negative correlation to measurements of human traits such as working memory [78] and intelligence, such that individuals showing greater asymmetry have lower IQ scores. [79] [80] [81] As FA links with both intelligence and facial attractiveness, it is possible that our perceptions of attractiveness have evolved based upon developmental quality, which includes traits such as intelligence and health. [59] However, some literature shows no such correlations between FA and intelligence. [10] A meta-analysis of the research covering this topic demonstrated that whilst published studies largely report negative correlations, unpublished studies often find no association between FA and intelligence. [82]

Personality

Research into FA suggests that there may be some correlation to specific personality factors, in particular, the Big Five personality traits. From a general view, one would expect someone who is more symmetrical (usually meaning greater attractiveness), to be high on agreeableness, conscientiousness, extraversion and openness, and low on neuroticism. [83] One of the most consistent findings reported is that low FA is positively associated with measures of extraversion, suggesting that more symmetrical people tend to be more extraverted than less symmetrical individuals, particularly when specifying to symmetry within the face. [5] [84] [85] A correlation has also been reported between FA and human social dominance. [86] However, research is proving less consistent with other personality factors, with some finding some weak correlations between low FA and conscientiousness and openness to experience, and others finding no significant differences between those with high or low FA. [87]

Antisocial behaviours

Some studies suggest a link between FA and aggression, but the evidence is mixed. In humans, criminal offenders show greater FA than nonoffenders. [41] However, other studies report that human males with higher FA show less physical aggression [88] [89] and less anger. [90] Females show no association between FA and physical aggression, [89] but some research has suggested that older female adolescents with higher facial FA are less hostile. [90] The type of aggression being studied may account for the mixed evidence that is seen here. For example, one study found that females with higher FA demonstrated higher levels of reactive aggression in response to high levels of provocation, whereas high FA males showed more reactive aggression under low levels of provocation. [91]

Research is also mixed in other animals. In Japanese scorpionflies (Panorpa nipponensis and Panorpa ochraceopennis), FA differences between members of the same sex competing for food determines the outcome of interspecific contests and aggression better than body size or ownership of food. [71] [92] Furthermore, cannibalistic laying hens (Gallus gallus domesticus) demonstrate more asymmetry than normal hens. [93] However, this link between FA and aggression in hens is questionable, as victimised hens also showed greater asymmetry. Furthermore, when prenatally injecting hen eggs with excess serotonin (5-HT), the hens later exhibited more FA at 18 weeks of age, but displayed less aggressive behaviours. It is suggested that the stress introduced during early embryonic stages via certain factors (such as excess serotonin) may create developmental instability, causing phenotypic and behavioural variations (such as increased or decreased aggression). [94]

Aging

In old age, facial symmetry has been associated with better cognitive aging, as lower levels of FA have been associated with higher intelligence and more efficient information processing in older men. [95] However, it has been found that risk of mortality cannot be predicted accurately from levels of FA in photographs of older adults. [96]

Other factors

Additionally, FA has been shown to predict atypical asymmetry of the brain. [97] Research has also shown that growth rates after birth positively correlate with FA. For example, increased FA has been found in people who were obese. [98]

See also

Related Research Articles

<span class="mw-page-title-main">Symmetry</span> Mathematical invariance under transformations

Symmetry in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations, such as translation, reflection, rotation, or scaling. Although these two meanings of the word can sometimes be told apart, they are intricately related, and hence are discussed together in this article.

<span class="mw-page-title-main">Sexual attraction</span> Attraction on the basis of sexual desire

Sexual attraction is attraction on the basis of sexual desire or the quality of arousing such interest. Sexual attractiveness or sex appeal is an individual's ability to attract other people sexually, and is a factor in sexual selection or mate choice. The attraction can be to the physical or other qualities or traits of a person, or to such qualities in the context where they appear. The attraction may be to a person's aesthetics, movements, voice, or smell, among other things. The attraction may be enhanced by a person's adornments, clothing, perfume or hair style. It can be influenced by individual genetic, psychological, or cultural factors, or to other, more amorphous qualities. Sexual attraction is also a response to another person that depends on a combination of the person possessing the traits and on the criteria of the person who is attracted.

<span class="mw-page-title-main">Seduction</span> Process of enticing a person to engage in sexual behaviour

In sexuality, seduction means enticing to sexual intercourse.

Sociosexuality, sometimes called sociosexual orientation, is the individual difference in the willingness to engage in sexual activity outside of a committed relationship. Individuals who are more restricted sociosexually are less willing to engage in casual sex; they prefer greater love, commitment and emotional closeness before having sex with romantic partners. Individuals who are more unrestricted sociosexually are more willing to have casual sex and are more comfortable engaging in sex without love, commitment or closeness.

The physical attractiveness stereotype is the tendency to assume that people who are physically attractive, based on social beauty standards, also possess other desirable personality traits. Research has shown that those who are physically attractive are viewed as more intelligent, competent, and socially desirable. The target benefits from what has been coined as “pretty privilege”, namely social, economic, and political advantages or benefits. Physical attractiveness can have a significant effect on how people are judged in terms of employment or social opportunities, friendship, sexual behavior, and marriage.

Interpersonal attraction, as a part of social psychology, is the study of the attraction between people which leads to the development of platonic or romantic relationships. It is distinct from perceptions such as physical attractiveness, and involves views of what is and what is not considered beautiful or attractive.

<span class="mw-page-title-main">Physical attractiveness</span> Aesthetic assessment of physical traits

Physical attractiveness is the degree to which a person's physical features are considered aesthetically pleasing or beautiful. The term often implies sexual attractiveness or desirability, but can also be distinct from either. There are many factors which influence one person's attraction to another, with physical aspects being one of them. Physical attraction itself includes universal perceptions common to all human cultures such as facial symmetry, sociocultural dependent attributes and personal preferences unique to a particular individual.

<span class="mw-page-title-main">Symmetry in biology</span> Geometric symmetry in living beings

Symmetry in biology refers to the symmetry observed in organisms, including plants, animals, fungi, and bacteria. External symmetry can be easily seen by just looking at an organism. For example, the face of a human being has a plane of symmetry down its centre, or a pine cone displays a clear symmetrical spiral pattern. Internal features can also show symmetry, for example the tubes in the human body which are cylindrical and have several planes of symmetry.

<span class="mw-page-title-main">Facial symmetry</span> One specific measure of bodily symmetry

Facial symmetry is one specific measure of bodily symmetry. Along with traits such as averageness and youthfulness, it influences judgments of aesthetic traits of physical attractiveness and beauty. For instance, in mate selection, people have been shown to have a preference for symmetry.

<span class="mw-page-title-main">Psychological adaptation</span>

A psychological adaptation is a functional, cognitive or behavioral trait that benefits an organism in its environment. Psychological adaptations fall under the scope of evolved psychological mechanisms (EPMs), however, EPMs refer to a less restricted set. Psychological adaptations include only the functional traits that increase the fitness of an organism, while EPMs refer to any psychological mechanism that developed through the processes of evolution. These additional EPMs are the by-product traits of a species’ evolutionary development, as well as the vestigial traits that no longer benefit the species’ fitness. It can be difficult to tell whether a trait is vestigial or not, so some literature is more lenient and refers to vestigial traits as adaptations, even though they may no longer have adaptive functionality. For example, xenophobic attitudes and behaviors, some have claimed, appear to have certain EPM influences relating to disease aversion, however, in many environments these behaviors will have a detrimental effect on a person's fitness. The principles of psychological adaptation rely on Darwin's theory of evolution and are important to the fields of evolutionary psychology, biology, and cognitive science.

In physical attractiveness studies, averageness describes the physical beauty that results from averaging the facial features of people of the same gender and approximately the same age. The majority of averageness studies have focused on photographic overlay studies of human faces, in which images are morphed together. The term "average" is used strictly to denote the technical definition of the mathematical mean. An averaged face is not unremarkable, but is, in fact, quite good looking. Nor is it typical in the sense of common or frequently occurring in the population, though it appears familiar, and is typical in the sense that it is a good example of a face that is representative of the category of faces.

Odour is sensory stimulation of the olfactory membrane of the nose by a group of molecules. Certain body odours are connected to human sexual attraction. Humans can make use of body odour subconsciously to identify whether a potential mate will pass on favourable traits to their offspring. Body odour may provide significant cues about the genetic quality, health and reproductive success of a potential mate.

Mate preferences in humans refers to why one human chooses or chooses not to mate with another human and their reasoning why. Men and women have been observed having different criteria as what makes a good or ideal mate. A potential mate's socioeconomic status has also been seen important, especially in developing areas where social status is more emphasized.

Developmental homeostasis is a process in which animals develop more or less normally, despite defective genes and deficient environments. It is an organism's ability to overcome certain circumstances in order to develop normally. This can be either a physical or mental circumstance that interferes with either a physical or mental trait. Many species have a specific norm, where those who fit that norm prosper while those who don't are killed or find it difficult to thrive. It is important that the animal be able to interact with the other group members effectively. Animals must learn their species' norms early to live a normal, successful life for that species.

<span class="mw-page-title-main">Human mating strategies</span> Courtship behavior of humans

In evolutionary psychology and behavioral ecology, human mating strategies are a set of behaviors used by individuals to select, attract, and retain mates. Mating strategies overlap with reproductive strategies, which encompass a broader set of behaviors involving the timing of reproduction and the trade-off between quantity and quality of offspring.

<span class="mw-page-title-main">Extended female sexuality</span>

Extended female sexuality is where the female of a species mates despite being infertile. In most species, the female only engages in copulation when she is fertile. However, extended sexuality has been documented in Old World primates, pair bonded birds and some insects. Extended sexuality is most prominent in human females who exhibit no change in copulation rate across the ovarian cycle.

Mate value is derived from Charles Darwin's theory of evolution and sexual selection, as well as the social exchange theory of relationships. Mate value is defined as the sum of traits that are perceived as desirable, representing genetic quality and/or fitness, an indication of a potential mate's reproductive success. Based on mate desirability and mate preference, mate value underpins mate selection and the formation of romantic relationships.

<span class="mw-page-title-main">Parasite-stress theory</span> Theory of human evolution

Parasite-stress theory, or pathogen-stress theory, is a theory of human evolution proposing that parasites and diseases encountered by a species shape the development of species' values and qualities, proposed by researchers Corey Fincher and Randy Thornhill.

The ovulatory shift hypothesis holds that women experience evolutionarily adaptive changes in subconscious thoughts and behaviors related to mating during different parts of the ovulatory cycle. It suggests that what women want, in terms of men, changes throughout the menstrual cycle. Two meta-analyses published in 2014 reached opposing conclusions on whether the existing evidence was robust enough to support the prediction that women's mate preferences change across the cycle. A newer 2018 review does not show women changing the type of men they desire at different times in their fertility cycle.

In humans, males and females differ in their strategies to acquire mates and focus on certain qualities. There are two main categories of strategies that both sexes utilize: short-term and long-term. Human mate choice, an aspect of sexual selection in humans, depends on a variety of factors, such as ecology, demography, access to resources, rank/social standing, genes, and parasite stress.

References

  1. 1 2 3 Valen, Leigh Van (June 1962). "A Study of Fluctuating Asymmetry". Evolution. 16 (2): 125–142. doi:10.2307/2406192. JSTOR   2406192.
  2. Tomkins, J. L.; Kotiaho, J. S. (2001). Fluctuating Asymmetry. London: Macmillan Publishers Ltd. pp. 1–5.
  3. 1 2 3 4 5 6 7 Thornhill, Gangestad, Randy, Steven W. (2008). The evolutionary biology of human female sexuality. Oxford, England: Oxford University Press. pp. 162–168. ISBN   978-0195340983.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 3 Milne, Barry J; Belsky, Jay; Poulton, Richie; Thomson, W. Murray; Caspi, Avshalom; Kieser, Jules (January 2003). "Fluctuating asymmetry and physical health among young adults". Evolution and Human Behavior. 24 (1): 53–63. doi:10.1016/S1090-5138(02)00120-4.
  5. 1 2 Fink, Bernhard; Neave, Nick; Manning, John T.; Grammer, Karl (2005-08-01). "Facial symmetry and the 'big-five' personality factors". Personality and Individual Differences. 39 (3): 523–529. doi:10.1016/j.paid.2005.02.002.
  6. Patrice, D.; Hingle, A.; Fowler, K.; Pomiankowski, A. (1999). "Measurement bias and fluctuating asymmetry estimates". Animal Behaviour. 57 (1): 251–253. doi:10.1006/anbe.1998.0977. PMID   10053093. S2CID   5458779.
  7. Swaddle, J. P. (2003). Fluctuating asymmetry, animal behaviour, and evolution. Advances in the Study of Behavior. Vol. 32. pp. 169–205. doi:10.1016/S0065-3454(03)01004-0. ISBN   9780120045327.
  8. Palmer, R.; Strobeck, C. (1992). "Fluctuating asymmetry as a measure of developmental stability: Implications of non-normal distributions and power of statistical tests". Acta Zoologica Fennica: 57–72.
  9. WADDINGTON, C. H. (1942). "Canalization of Development and the Inheritance of Acquired Characters". Nature. 150 (3811): 563–565. Bibcode:1942Natur.150..563W. doi:10.1038/150563a0. S2CID   4127926.
  10. 1 2 Johnson, Wendy; Segal, Nancy L.; Bouchard Jr., Thomas J. (2008-05-01). "Fluctuating asymmetry and general intelligence: No genetic or phenotypic association". Intelligence. 36 (3): 279–288. doi:10.1016/j.intell.2007.07.001.
  11. 1 2 Fink, Bernhard; Neave, Nick; Manning, John T.; Grammer, Karl (2006-08-01). "Facial symmetry and judgements of attractiveness, health and personality". Personality and Individual Differences. 41 (3): 491–499. doi:10.1016/j.paid.2006.01.017.
  12. Özener, Bariş (2010-07-01). "Effect of inbreeding depression on growth and fluctuating asymmetry in Turkish young males". American Journal of Human Biology. 22 (4): 557–562. doi:10.1002/ajhb.21046. ISSN   1520-6300. PMID   20309882. S2CID   196366694.
  13. Keller, Laurent; Passera, Luc (1993-09-01). "Incest avoidance, fluctuating asymmetry, and the consequences of inbreeding in Iridomyrmex humilis, an ant with multiple queen colonies". Behavioral Ecology and Sociobiology. 33 (3): 191–199. doi:10.1007/BF00216600. ISSN   0340-5443. S2CID   30768721.
  14. Beasley, De Anna E.; Bonisoli-Alquati, Andrea; Mousseau, Timothy A. (2013-07-01). "The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: A meta-analysis". Ecological Indicators. 30: 218–226. doi:10.1016/j.ecolind.2013.02.024. S2CID   84542545.
  15. Ozener, Bariş (2011-12-01). "Does urban poverty increase body fluctuating asymmetry?". Collegium Antropologicum. 35 (4): 1001–1005. ISSN   0350-6134. PMID   22397230.
  16. Mallard, Samantha T.; Barnard, C. J. (2004-02-01). "Food stress, fluctuating asymmetry and reproductive performance in the gryllid crickets Gryllus bimaculatus and Gryllodes sigillatus". Behaviour. 141 (2): 219–232. doi:10.1163/156853904322890825. ISSN   1568-539X.
  17. Møller, Anders Pape (2006-03-01). "A review of developmental instability, parasitism and disease: Infection, genetics and evolution". Infection, Genetics and Evolution. 6 (2): 133–140. doi:10.1016/j.meegid.2005.03.005. PMID   16269271.
  18. Gangestad, Steven W.; Merriman, Leslie A.; Emery Thompson, Melissa (2010-12-01). "Men's oxidative stress, fluctuating asymmetry and physical attractiveness". Animal Behaviour. 80 (6): 1005–1013. doi:10.1016/j.anbehav.2010.09.003. S2CID   45721316.
  19. Singh, Devendra; Rosen, Valerie C. (2001). "Effects of maternal body morphology, morning sickness, gestational diabetes and hypertension on fluctuating asymmetry in young women". Evolution and Human Behavior. 22 (6): 373–384. doi:10.1016/s1090-5138(01)00082-4.
  20. Zakharov, Vladmir M.; Yablokov, Alexay V. (1990-01-01). "Skull Asymmetry in the Baltic Grey Seal: Effects of Environmental Pollution". Ambio. 19 (5): 266–269. JSTOR   4313708.
  21. Sánchez-Chardi, Alejandro; García-Pando, Marián; López-Fuster, María José (2013-10-01). "Chronic exposure to environmental stressors induces fluctuating asymmetry in shrews inhabiting protected Mediterranean sites". Chemosphere. 93 (6): 916–923. Bibcode:2013Chmsp..93..916S. doi:10.1016/j.chemosphere.2013.05.056. PMID   23800592.
  22. Oleksyk, Taras K; Novak, James M; Purdue, James R; Gashchak, Sergiy P; Smith, Michael H (2004-01-01). "High levels of fluctuating asymmetry in populations of Apodemus flavicollis from the most contaminated areas in Chornobyl". Journal of Environmental Radioactivity. 73 (1): 1–20. doi:10.1016/j.jenvrad.2003.07.001. PMID   15001292.
  23. Markow, Therese Ann (1995-01-01). "Evolutionary Ecology and Developmental Instability". Annual Review of Entomology. 40 (1): 105–120. doi:10.1146/annurev.en.40.010195.000541.
  24. Graham, J. H. (1992). "Genomic coadaption and development stability in hybrid zones". Acta Zool. Fenn. 191: 121–132.
  25. Graham, J. H., D. C. Freeman and J. M. Emlen. 1993. Developmental stability: A sensitive indicator of populations under stress, pp. 1366158. /)I W. G. Landis, J. S. Hughes and M. A. Lewis (Eds.), Environmental Toxicology and Risk Assessment. American Society for Testing and Materials, Philadelphia, PA.
  26. Tomkins, J. L.; Simmons, L. W. (1995). "Patterns of fluctuating asymmetry in earwig forceps: No evidence for reliable signalling". Proc. R. Soc. Lond. B. 259 (1354): 89–96. Bibcode:1995RSPSB.259...89T. doi:10.1098/rspb.1995.0014. S2CID   85238415.
  27. Moller, A. P. 1994. Sexual Selection and the Barn Swallow. Oxford University Press. Oxford.
  28. Manning, John T (March 1995). "Fluctuating asymmetry and body weight in men and women: Implications for sexual selection". Ethology and Sociobiology. 16 (2): 145–153. doi:10.1016/0162-3095(94)00074-H.
  29. Thornhill, Randy; Gangestad, Steven W (March 2006). "Facial sexual dimorphism, developmental stability, and susceptibility to disease in men and women". Evolution and Human Behavior. 27 (2): 131–144. doi:10.1016/j.evolhumbehav.2005.06.001.
  30. 1 2 Gangestad, Steven W (December 2010). "Men's oxidative stress, fluctuating asymmetry and physical attractiveness". Animal Behaviour. 80 (6): 1005–1013. doi:10.1016/j.anbehav.2010.09.003. S2CID   45721316.
  31. "Gangsted2006">Gangsted, Steven; Thornhill, Randy (March 2006). "Facial sexual dimorphism, developmental stability, and susceptibility to disease in men and women". Evolution and Human Behavior. 27 (2): 131–144. doi:10.1016/j.evolhumbehav.2005.06.001.
  32. Møller, Anders Pape (April 2006). "A review of developmental instability, parasitism and disease: Infection, genetics and evolution". Infection, Genetics and Evolution. 6 (2): 133–140. doi:10.1016/j.meegid.2005.03.005. PMID   16269271 . Retrieved 21 February 2016.
  33. Pound, Nicholas; Lawson, David W.; Toma, Arshed M.; Richmond, Stephen; Zhurov, Alexei I.; Penton-Voak, Ian S. (13 August 2014). "Facial fluctuating asymmetry is not associated with childhood ill-health in a large British cohort study". Proceedings of the Royal Society B: Biological Sciences. 281 (1792): 20141639. doi:10.1098/rspb.2014.1639. PMC   4150332 . PMID   25122232.
  34. Weeden, Jason; Sabini, John (2005). "Physical Attractiveness and Health in Western Societies: A Review". Psychological Bulletin. 131 (5): 635–653. doi:10.1037/0033-2909.131.5.635. PMID   16187849. S2CID   24782931.
  35. 1 2 Borkowska, Barbara; Powlowski, Boguslaw (2014). "Recreational drug use and fluctuating asymmetry: Testing the handicap principle". Evolutionary Psychology. 12 (4): 769–782. doi: 10.1177/147470491401200407 . PMC   10524073 . PMID   25300053.
  36. 1 2 Koziel, Slawomir; Kretschmer, Weronika; Pawlowski, Boguslaw (May 2010). "Tattoos and piercings as signals of biological quality". Evolution and Human Behavior. 31 (3): 187–192. doi:10.1016/j.evolhumbehav.2009.09.009.
  37. Zahavi, Amotz (1997). The handicap principle: a missing piece of Darwin's puzzle . Oxford: Oxford University Press. ISBN   978-0-19-510035-8.
  38. Thoma, Robert J; Gangestad, Steven W; Euler, Matthew J; Lysne, Per A; Monnig, Mollie; Yeo, Ronald A (2008). "Developmental instability and markers of schizotypy in university students". Evolutionary Psychology. 6 (4): 586–594. doi: 10.1177/147470490800600405 .
  39. Martin, S. M.; Manning, J. T.; Dowrick, C. F. (May 1999). "Fluctuating asymmetry, relative digit length, and depression in men". Evolution and Human Behavior. 20 (3): 203–214. doi:10.1016/S1090-5138(99)00006-9.
  40. Shackelford, Todd K; Larsen, Randy J (February 1997). "Facial asymmetry as an indicator of psychological, emotional and physiological distress" (PDF). Journal of Personality and Social Psychology. 72 (2): 456–466. CiteSeerX   10.1.1.320.5882 . doi:10.1037/0022-3514.72.2.456. PMID   9107011 . Retrieved 19 February 2016.
  41. 1 2 Lalumière, Martin L.; Harris, Grant T.; Rice, Marnie E. (March 2001). "Psychopathy and developmental instability". Evolution and Human Behavior. 22 (2): 75–92. doi:10.1016/S1090-5138(00)00064-7. PMID   11282307.
  42. Levangie, P. K. (June 1999). "The association between static pelvic asymmetry and low back pain". Spine. 24 (12): 1234–1242. doi:10.1097/00007632-199906150-00011. PMID   10382251.
  43. Al-Eisa, Einas; Egan, David; Wassersug, Richard (January 2004). "Fluctuating asymmetry and low back pain". Evolution and Human Behavior. 25 (1): 31–37. doi:10.1016/S1090-5138(03)00081-3.
  44. Goldberg, Caroline J.; Fogarty, Esmond E.; Moore, David P.; Dowling, Frank E. (April 1997). "Fluctuating asymmetry and vertebral malformation. A study of palmar dermatoglyphics in congenital spinal deformities". Spine. 22 (7): 775–779. doi:10.1097/00007632-199704010-00014. PMID   9106319. S2CID   2333709.
  45. Neiswanger, Katherine; Cooper, Margaret E.; Liu, You-e; Hu, Dan-ning; Melnick, Michael; Weinberg, Seth M.; Marazita, Mary L. (March 2005). "Bilateral Asymmetry in Chinese Families With Cleft Lip With or Without Cleft Palate". The Cleft Palate-Craniofacial Journal. 42 (2): 192–196. doi:10.1597/03-032.1. PMID   15748111. S2CID   40427138.
  46. Lu, Da-wei; Shi, Bing; Chen, Huai-qing; He, Xing; Liao, Li-shu; Zheng, Qian (March 2010). "A Comparative Study of Fluctuating Asymmetry in Chinese Families With Nonsyndromic Cleft Palate". The Cleft Palate-Craniofacial Journal. 47 (2): 182–188. doi:10.1597/08-197.1. PMID   20210639.
  47. Otero, Liliana; Bermudez, Luis; Lizarraga, Karina; Tangco, Irene; Gannaban, Rocelyn; Meles, Daniel (2012). "A Comparative Study of Facial Asymmetry in Philippine, Colombian, and Ethiopian Families with Nonsyndromic Cleft Lip Palate". Plastic Surgery International. 2012: 580769. doi: 10.1155/2012/580769 . PMC   3488392 . PMID   23150817.
  48. Trivers, Robert; Fink, Bernhard; Russell, Mark; McCarty, Kristofor; James, Bruce; Palestis, Brian G.; d'Ettorre, Patrizia (17 November 2014). "Lower Body Symmetry and Running Performance in Elite Jamaican Track and Field Athletes". PLOS ONE. 9 (11): e113106. Bibcode:2014PLoSO...9k3106T. doi: 10.1371/journal.pone.0113106 . PMC   4234648 . PMID   25401732 . Retrieved 2 April 2016.
  49. Seminati, Elena; Nardello, Francesca; Zamparo, Paola; Ardigò, Luca P.; Faccioli, Niccolò; Minetti, Alberto E.; Carrier, David (24 September 2013). "Anatomically Asymmetrical Runners Move More Asymmetrically at the Same Metabolic Cost". PLOS ONE. 8 (9): e74134. Bibcode:2013PLoSO...874134S. doi: 10.1371/journal.pone.0074134 . PMC   3782489 . PMID   24086316 . Retrieved 2 April 2016.
  50. Trivers, Robert; Palestis, Brian G.; Manning, John T.; Fink, Bernhard (19 August 2013). "The Symmetry of Children's Knees Is Linked to Their Adult Sprinting Speed and Their Willingness to Sprint in a Long-Term Jamaican Study". PLOS ONE. 8 (8): e72244. Bibcode:2013PLoSO...872244T. doi: 10.1371/journal.pone.0072244 . PMC   3747165 . PMID   23977263.
  51. Little, Anthony C.; Paukner, Annika; Woodward, Ruth A.; Suomi, Stephen J. (21 July 2012). "Facial asymmetry is negatively related to condition in female macaque monkeys". Behavioral Ecology and Sociobiology. 66 (9): 1311–1318. doi:10.1007/s00265-012-1386-4. PMC   3649767 . PMID   23667290 . Retrieved 30 March 2016.
  52. Sefcek, Jon A.; King, James E. (2007). "Chimpanzee facial symmetry: A biometric measure of chimpanzee health". American Journal of Primatology. 69 (11): 1257–1263. doi:10.1002/ajp.20426. PMID   17387675. S2CID   34264181.
  53. Cuervo, José Javier; Dhaoui, Mohamed; Espeso, Gerardo (July 2011). "Fluctuating asymmetry and blood parameters in three endangered gazelle species". Mammalian Biology. 76 (4): 498–505. doi:10.1016/j.mambio.2011.01.007.
  54. Mateos, Concha; Alarcos, Susana; Carranza, Juan; Sánchez-Prieto, Cristina B.; Valencia, Juliana (May 2008). "Fluctuating asymmetry of red deer antlers negatively relates to individual condition and proximity to prime age". Animal Behaviour. 75 (5): 1629–1640. doi:10.1016/j.anbehav.2007.10.016. S2CID   53169199.
  55. Rantala, Markus J.; Ahtiainen, Jari J. (December 2004). "Fluctuating asymmetry and immune function in a field cricket". Oikos. 107 (3): 479–484. Bibcode:2004Oikos.107..479R. doi:10.1111/j.0030-1299.2004.12776.x.
  56. Harshman, Lawrence G; Müller, Hans-Georg; Liu, Xueli; Wang, Yue; Carey, James R (October 2005). "The symmetry of longevity". Journal of Gerontology: Biological Sciences. 60 (10): 1233–1237. doi:10.1093/gerona/60.10.1233. PMC   2611956 . PMID   16282553.
  57. Wade, T. J. (2010). "The Relationships between Symmetry and Attractiveness and Mating Relevant Decisions and Behavior: A Review". Symmetry. 2 (2): 1081–1098. Bibcode:2010Symm....2.1081W. doi: 10.3390/sym2021081 .
  58. Grammer, Karl; Thornhill, Randy (1994). "Human (Homo sapiens) Facial Attractiveness and Sexual Selection: The Role of Symmetry and Averageness". Journal of Comparative Psychology. 108 (3): 233–242. doi:10.1037/0735-7036.108.3.233. PMID   7924253. S2CID   1205083.
  59. 1 2 Gangestad, S. W.; Thornhill, R.; Yeo, R. A. (1994). "Facial attractiveness, developmental stability, and fluctuating asymmetry". Ethology & Sociology. 15 (2): 73–85. doi:10.1016/0162-3095(94)90018-3.
  60. Thornhill, Randy; Gangestad, Steven W.; Comer, Randall (1995). "Human female orgasm and mate fluctuating asymmetry". Animal Behaviour. 50 (6): 1601–1615. doi:10.1016/0003-3472(95)80014-X. S2CID   44103857.
  61. Hughes, Susan M.; Harrison, Marissa A.; Gallup, Gordon G. Jr. (May 2002). "The sound of symmetry: Voice as a marker of developmental instability". Evolution and Human Behavior. 23 (3): 173–180. doi:10.1016/S1090-5138(01)00099-X.
  62. Little, A. C.; Jones, B. C.; DeBruine, L. M. (2011). "Facial attractiveness: evolutionary based research". Philosophical Transactions of the Royal Society of London B: Biological Sciences. 366 (1571): 1638–1659. doi:10.1098/rstb.2010.0404. PMC   3130383 . PMID   21536551.
  63. Thornhill, Randy; Gangestad, Steven, W. (May 1999). "The scent of symmetry: A human sex pheromone that signals fitness?". Evolution and Human Behavior. 20 (3): 175–201. doi:10.1016/S1090-5138(99)00005-7.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. Thornhill, R; Gangestad, S (1994). "Fluctuating asymmetry and human sexual behaviour". Psychological Science. 5 (5): 297–302. doi:10.1111/j.1467-9280.1994.tb00629.x. S2CID   145354873.
  65. Brown, William M.; Price, Michael E.; Kang, Jinsheng; Pound, Nicholas; Zhao, Yue; Yu, Hui (September 2008). "Fluctuating asymmetry and preferences for sex-typical bodily characteristics". PNAS. 105 (35): 12938–12943. Bibcode:2008PNAS..10512938B. doi: 10.1073/pnas.0710420105 . PMC   2529114 . PMID   18711125.
  66. Gangestad, Steven W.; Thornhill, Randy (1997). "The evolutionary psychology of extrapair sex: The role of fluctuating asymmetry". Evolution and Human Behavior. 18 (2): 69–88. doi:10.1016/s1090-5138(97)00003-2.
  67. Swaddle, John P.; Cuthill, Innes C. (July 1995). "Asymmetry and human facial attractiveness: Symmetry may not always be beautiful" (PDF). Proceedings: Biological Sciences. 261 (1360): 111–116. Bibcode:1995RSPSB.261..111S. doi:10.1098/rspb.1995.0124. PMID   7644543. S2CID   33285473 . Retrieved 25 March 2016.
  68. Van Dongen, Stefan (2014). "Associations among facial masculinity, physical strength, fluctuating asymmetry and attractiveness in young men and women". Annals of Human Biology. 41 (3): 205–213. doi:10.3109/03014460.2013.847120. PMID   24555492. S2CID   137295054.
  69. Beck, Michelle L.; Pruett-Jones, Stephen (2002). "Fluctuating asymmetry, sexual selection, and survivorship in male dark-winged damselflies". Ethology. 108 (9): 779–791. Bibcode:2002Ethol.108..779B. doi:10.1046/j.1439-0310.2002.00814.x.
  70. 1 2 Thornhill, R. (1992). "Fluctuating asymmetry and the mating system of the japanese scorpionfly, panorpa japonica". Animal Behaviour. 44 (5): 867–879. doi:10.1016/s0003-3472(05)80583-4. S2CID   53176447.
  71. Tsubaki, Y.; Matsumoto, K. (1998). "Fluctuating asymmetry and male mating success in a sphragis-bearing butterfly luehdorfia japonica (lepidoptera: Papilionidae)". Journal of Insect Behavior. 11 (4): 571–582. doi:10.1023/a:1022371531263. S2CID   19288232.
  72. Møller, A. P. (1990). "Fluctuating asymmetry in male sexual ornaments may reliable reveal male quality". Animal Behaviour. 40 (6): 1185–1187. doi:10.1016/s0003-3472(05)80187-3. S2CID   53149623.
  73. Mateos, C.; Alarcos, S.; Carranza, J.; Sánchez-Prieto, C. B.; Valencia, J. (2008). "Fluctuating asymmetry of red deer antlers negatively relates to individual condition and proximity to prime age". Animal Behaviour. 75 (5): 1629–1640. doi:10.1016/j.anbehav.2007.10.016. S2CID   53169199.
  74. Rintamäki, P. T.; Alatalo, R. V.; Höglund, J.; Lundberg, A. (1997). "Fluctuating asymmetry and copulation success in lekking black grouse". Animal Behaviour. 54 (2): 265–269. doi:10.1006/anbe.1996.0434. PMID   9268456. S2CID   37950709.
  75. Ligon, J. D.; Kimball, R.; Merola-Zwartjes, M. (1998). "Mate choice by female red junglefowl: The issues of multiple ornaments and fluctuating asymmetry". Animal Behaviour. 55 (1): 41–50. doi:10.1006/anbe.1997.0582. PMID   9480670. S2CID   25628031.
  76. Oakes, E. J.; Barnard, P. (1994). "Fluctuating asymmetry and mate choice in paradise whydahs, vidua pparadisaea: An experimental manipulation". Animal Behaviour. 48 (4): 937–943. doi:10.1006/anbe.1994.1319. S2CID   53195903.
  77. Yeo, RA; Hill, D; Campbell, R; Vigil, J; Brooks, WM (2000). "Developmental instability and working memory ability in children: a magnetic resonance spectroscopy investigation". Developmental Neuropsychology. 17 (2): 143–59. doi:10.1207/S15326942DN1702_01. PMID   10955200. S2CID   24499838.
  78. Furlow, FB; Armijo-Prewitt, T; Gangestad, SW; Thornhill, R (1997-06-22). "Fluctuating asymmetry and psychometric intelligence". Proceedings of the Royal Society B . 264 (1383): 823–9. Bibcode:1997RSPSB.264..823B. doi:10.1098/rspb.1997.0115. PMC   1688437 . PMID   9265189.
  79. Bates, T (1 January 2007). "Fluctuating asymmetry and intelligence". Intelligence. 35 (1): 41–46. doi:10.1016/j.intell.2006.03.013.
  80. Prokosch, M; Yeo, R; Miller, G (1 April 2005). "Intelligence tests with higher -loadings show higher correlations with body symmetry: Evidence for a general fitness factor mediated by developmental stability". Intelligence. 33 (2): 203–213. doi:10.1016/j.intell.2004.07.007.
  81. Banks, George C.; Batchelor, John H.; McDaniel, Michael A. (2010-07-01). "Smarter people are (a bit) more symmetrical: A meta-analysis of the relationship between intelligence and fluctuating asymmetry". Intelligence. 38 (4): 393–401. doi:10.1016/j.intell.2010.04.003.
  82. Tartaglia, Stefano; Rollero, Chiara (2015-11-27). "The Effects of Attractiveness and Status on Personality Evaluation". Europe's Journal of Psychology. 11 (4): 677–690. doi:10.5964/ejop.v11i4.896. ISSN   1841-0413. PMC   4873083 . PMID   27247685.
  83. Pound, Nicholas; Penton-Voak, Ian S.; Brown, William M. (2007-10-01). "Facial symmetry is positively associated with self-reported extraversion". Personality and Individual Differences. 43 (6): 1572–1582. doi:10.1016/j.paid.2007.04.014.
  84. Fink, Bernhard; Neave, Nick; Manning, John T.; Grammer, Karl (2006-08-01). "Facial symmetry and judgements of attractiveness, health and personality". Personality and Individual Differences. 41 (3): 491–499. doi:10.1016/j.paid.2006.01.017.
  85. Furlow, B; Gangestad, SW; Armijo-Prewitt, T (1998-01-07). "Developmental stability and human violence". Proceedings of the Royal Society B . 265 (1390): 1–6. doi:10.1098/rspb.1998.0255. PMC   1688754 . PMID   9470212.
  86. Hope, David; Bates, Timothy; Penke, Lars; Gow, Alan J.; Starr, John M.; Deary, Ian J. (2011-01-01). "Fluctuating Asymmetry and personality". Personality and Individual Differences. 50 (1): 49–52. doi:10.1016/j.paid.2010.08.020.
  87. Manning, J. T.; Wood, D. (1998-03-01). "Fluctuating asymmetry and aggression in boys". Human Nature. 9 (1): 53–65. doi:10.1007/s12110-998-1011-4. ISSN   1045-6767. PMID   26197357. S2CID   20999908.
  88. 1 2 Furlow, Bryant; Gangestad, Steven W.; Armijo-Prewitt, Tara (1998-01-07). "Developmental stability and human violence". Proceedings of the Royal Society of London B: Biological Sciences. 265 (1390): 1–6. doi:10.1098/rspb.1998.0255. ISSN   0962-8452. PMC   1688754 . PMID   9470212.
  89. 1 2 Muñoz-Reyes, José Antonio; Gil-Burmann, Carlos; Fink, Bernhard; Turiegano, Enrique (2012-11-01). "Facial asymmetry and aggression in Spanish adolescents". Personality and Individual Differences. 53 (7): 857–861. doi:10.1016/j.paid.2012.06.012.
  90. Benderlioglu, Zeynep; Sciulli, Paul W.; Nelson, Randy J. (2004). "Fluctuating asymmetry predicts human reactive aggression". American Journal of Human Biology. 16 (4): 458–469. doi:10.1002/ajhb.20047. PMID   15214064. S2CID   17249167.
  91. Thornhill, Randy (1992-05-01). "Fluctuating asymmetry, interspecific aggression and male mating tactics in two species of Japanese scorpionflies". Behavioral Ecology and Sociobiology. 30 (5): 357–363. doi:10.1007/BF00170603. ISSN   0340-5443. S2CID   20033857.
  92. Yngvesson, Jenny; Keeling, Linda J. (2001-03-01). "Body size and fluctuating asymmetry in relation to cannibalistic behaviour in laying hens". Animal Behaviour. 61 (3): 609–615. doi:10.1006/anbe.2000.1616. S2CID   53157959.
  93. Dennis, Rachel L.; Fahey, Alan G.; Cheng, Heng W. (2013-03-01). "Alterations to Embryonic Serotonin Change Aggression and Fearfulness". Aggressive Behavior. 39 (2): 91–98. doi:10.1002/ab.21459. ISSN   1098-2337. PMID   23386480.
  94. Penke, Lars; Bates, Timothy C; Gow, Alan J; Pattie, Alison; Starr, John M; Jones, Benedict C; Perrett, David I; Deary, Ian J (November 2009). "Symmetric faces are a sign of successful cognitive aging". Evolution and Human Behavior. 30 (6): 429–437. doi:10.1016/j.evolhumbehav.2009.06.001.
  95. Dykiert, Dominika; Bates, Timothy C; Gow, Alan J; Penke, Lars; Starr, John M; Deary, Ian J (2012). "Predicting mortality from human faces". Psychosomatic Medicine. 74 (6): 560–566. doi:10.1097/PSY.0b013e318259c33f. PMID   22753633. S2CID   39099779.
  96. Davis, J. T; Gangestad, S. W; Lewine, J. D; Thoma, R. J; Yeo, R. A (2002). "Fluctuating asymmetry and the human brain". Laterality: Asymmetries of Body, Brain and Cognition. 7 (1): 45–58. doi:10.1080/13576500143000122. PMID   15513187. S2CID   40858786.
  97. Wells, Jonathan C. K.; Hallal, Pedro C.; Manning, John T.; Victora, Cesar G. (2006-02-01). "A trade-off between early growth rate and fluctuating asymmetry in test Brazilian boys". Annals of Human Biology. 33 (1): 112–124. doi:10.1080/03014460500480391. ISSN   0301-4460. PMID   16500816. S2CID   12988619.