Force-free magnetic field

Last updated
The magnetic field in the Sun's corona is often approximated as a force-free field. Picturing the Sun's Magnetic Field (25513266790).jpg
The magnetic field in the Sun's corona is often approximated as a force-free field.

A force-free magnetic field is a magnetic field in which the Lorentz force is equal to zero and the magnetic pressure greatly exceeds the plasma pressure such that non-magnetic forces can be neglected. For a force-free field, the electric current density is either zero or parallel to the magnetic field.

Contents

Definition

When a magnetic field is approximated as force-free, all non-magnetic forces are neglected and the Lorentz force vanishes. For non-magnetic forces to be neglected, it is assumed that the ratio of the plasma pressure to the magnetic pressure—the plasma β—is much less than one, i.e., . With this assumption, magnetic pressure dominates over plasma pressure such that the latter can be ignored. It is also assumed that the magnetic pressure dominates over other non-magnetic forces, such as gravity, so that these forces can similarly be ignored.

In SI units, the Lorentz force condition for a static magnetic field can be expressed as

where

is the current density and is the vacuum permeability. Alternatively, this can be written as

These conditions are fulfilled when the current vanishes or is parallel to the magnetic field. [1]

Zero current density

If the current density is identically zero, then the magnetic field is the gradient of a magnetic scalar potential :

The substitution of this into results in Laplace's equation, which can often be readily solved, depending on the precise boundary conditions. In this case, the field is referred to as a potential field or vacuum magnetic field.

Nonzero current density

If the current density is not zero, then it must be parallel to the magnetic field, i.e., where is a scalar function known as the force-free parameter or force-free function. This implies that

The force-free parameter can be a function of position but must be constant along field lines.

Linear force-free field

When the force-free parameter is constant everywhere, the field is called a linear force-free field (LFFF). A constant allows for the derivation of a vector Helmholtz equation

by taking the curl of the nonzero current density equations above.

Nonlinear force-free field

When the force-free parameter depends on position, the field is called a nonlinear force-free field (NLFFF). In this case, the equations do not possess a general solution, and usually must be solved numerically. [1] [2] [3] :50–54

Physical examples

In the Sun's upper chromosphere and lower corona, the plasma β can locally be of order 0.01 or lower allowing for the magnetic field to be approximated as force-free. [1] [4] [5] [6]

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, the Lorentz force is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force of

<span class="mw-page-title-main">Maxwell's equations</span> Equations describing classical electromagnetism

Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

<span class="mw-page-title-main">Dynamo theory</span> Mechanism by which a celestial body generates a magnetic field

In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets.

"A Dynamical Theory of the Electromagnetic Field" is a paper by James Clerk Maxwell on electromagnetism, published in 1865. In the paper, Maxwell derives an electromagnetic wave equation with a velocity for light in close agreement with measurements made by experiment, and deduces that light is an electromagnetic wave.

<span class="mw-page-title-main">Magnetic vector potential</span> Integral of the magnetic field

In classical electromagnetism, magnetic vector potential is the vector quantity defined so that its curl is equal to the magnetic field: . Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials φ and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields.

<span class="mw-page-title-main">Four-current</span> 4D analogue of electric current density

In special and general relativity, the four-current is the four-dimensional analogue of the electric current density. Also known as vector current, it is used in the geometric context of four-dimensional spacetime, rather than three-dimensional space and time separately. Mathematically it is a four-vector and is Lorentz covariant.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In electromagnetism, the Lorenz gauge condition or Lorenz gauge is a partial gauge fixing of the electromagnetic vector potential by requiring The name is frequently confused with Hendrik Lorentz, who has given his name to many concepts in this field. The condition is Lorentz invariant. The Lorenz gauge condition does not completely determine the gauge: one can still make a gauge transformation where is the four-gradient and is any harmonic scalar function: that is, a scalar function obeying the equation of a massless scalar field.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

The Vlasov equation is a differential equation describing time evolution of the distribution function of plasma consisting of charged particles with long-range interaction, such as the Coulomb interaction. The equation was first suggested for the description of plasma by Anatoly Vlasov in 1938 and later discussed by him in detail in a monograph.

The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

<span class="mw-page-title-main">Magnetic pressure</span> Energy density associated with a magnetic field

In physics, magnetic pressure is an energy density associated with a magnetic field. In SI units, the energy density of a magnetic field with strength can be expressed as

<span class="mw-page-title-main">Magnetic tension</span> Restoring force on bent magnetic field lines

In physics, magnetic tension is a restoring force with units of force density that acts to straighten bent magnetic field lines. In SI units, the force density exerted perpendicular to a magnetic field can be expressed as

<span class="mw-page-title-main">Flux tube</span> Tube-like region of space with constant magnet flux along its length

A flux tube is a generally tube-like (cylindrical) region of space containing a magnetic field, B, such that the cylindrical sides of the tube are everywhere parallel to the magnetic field lines. It is a graphical visual aid for visualizing a magnetic field. Since no magnetic flux passes through the sides of the tube, the flux through any cross section of the tube is equal, and the flux entering the tube at one end is equal to the flux leaving the tube at the other. Both the cross-sectional area of the tube and the magnetic field strength may vary along the length of the tube, but the magnetic flux inside is always constant.

<span class="mw-page-title-main">Electromagnetic stress–energy tensor</span>

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Inhomogeneous electromagnetic wave equation</span> Equation in physics

In electromagnetism and applications, an inhomogeneous electromagnetic wave equation, or nonhomogeneous electromagnetic wave equation, is one of a set of wave equations describing the propagation of electromagnetic waves generated by nonzero source charges and currents. The source terms in the wave equations make the partial differential equations inhomogeneous, if the source terms are zero the equations reduce to the homogeneous electromagnetic wave equations. The equations follow from Maxwell's equations.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

<span class="mw-page-title-main">Classical electromagnetism and special relativity</span> Relationship between relativity and pre-quantum electromagnetism

The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.

References

  1. 1 2 3 Wiegelmann, Thomas; Sakurai, Takashi (December 2021). "Solar force-free magnetic fields" (PDF). Living Reviews in Solar Physics. 18 (1): 1. doi:10.1007/s41116-020-00027-4. S2CID   232107294 . Retrieved 18 May 2022.
  2. Bellan, Paul Murray (2006). Fundamentals of plasma physics. Cambridge: Cambridge University Press. ISBN   0521528003.
  3. Parker, E. N. (2019). Cosmical Magnetic Fields: Their Origin and Their Activity. Oxford: Clarendon Press. ISBN   978-0-19-882996-6.
  4. Amari, T.; Aly, J. J.; Luciani, J. F.; Boulmezaoud, T. Z.; Mikic, Z. (1997). "Reconstructing the Solar Coronal Magnetic Field as a Force-Free Magnetic Field". Solar Physics. 174: 129–149. Bibcode:1997SoPh..174..129A. doi:10.1023/A:1004966830232.
  5. Low, B. C.; Lou, Y. Q. (March 1990). "Modeling Solar Force-Free Magnetic Fields". The Astrophysical Journal. 352: 343. Bibcode:1990ApJ...352..343L. doi:10.1086/168541.
  6. Peter, H.; Warnecke, J.; Chitta, L. P.; Cameron, R. H. (November 2015). "Limitations of Force-Free Magnetic Field Extrapolations: Revisiting Basic Assumptions". Astronomy & Astrophysics. 584. arXiv: 1510.04642 . Bibcode:2015A&A...584A..68P. doi:10.1051/0004-6361/201527057.