Frobenius manifold

Last updated

In the mathematical field of differential geometry, a Frobenius manifold, introduced by Dubrovin, [1] is a flat Riemannian manifold with a certain compatible multiplicative structure on the tangent space. The concept generalizes the notion of Frobenius algebra to tangent bundles.

Contents

Frobenius manifolds occur naturally in the subject of symplectic topology, more specifically quantum cohomology. The broadest definition is in the category of Riemannian supermanifolds. We will limit the discussion here to smooth (real) manifolds. A restriction to complex manifolds is also possible.

Definition

Let M be a smooth manifold. An affine flat structure on M is a sheaf Tf of vector spaces that pointwisely span TM the tangent bundle and the tangent bracket of pairs of its sections vanishes.

As a local example consider the coordinate vectorfields over a chart of M. A manifold admits an affine flat structure if one can glue together such vectorfields for a covering family of charts.

Let further be given a Riemannian metric g on M. It is compatible to the flat structure if g(X, Y) is locally constant for all flat vector fields X and Y.

A Riemannian manifold admits a compatible affine flat structure if and only if its curvature tensor vanishes everywhere.

A family of commutative products * on TM is equivalent to a section A of S2(T*M)  TM via

We require in addition the property

Therefore, the composition g#A is a symmetric 3-tensor.

This implies in particular that a linear Frobenius manifold (M, g, *) with constant product is a Frobenius algebra M.

Given (g, Tf, A), a local potential Φ is a local smooth function such that

for all flat vector fields X, Y, and Z.

A Frobenius manifold (M, g, *) is now a flat Riemannian manifold (M, g) with symmetric 3-tensor A that admits everywhere a local potential and is associative.

Elementary properties

The associativity of the product * is equivalent to the following quadratic PDE in the local potential Φ

where Einstein's sum convention is implied, Φ,a denotes the partial derivative of the function Φ by the coordinate vectorfield ∂/∂xa which are all assumed to be flat. gef are the coefficients of the inverse of the metric.

The equation is therefore called associativity equation or Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equation.

Examples

Beside Frobenius algebras, examples arise from quantum cohomology. Namely, given a semipositive symplectic manifold (M, ω) then there exists an open neighborhood U of 0 in its even quantum cohomology QHeven(M, ω) with Novikov ring over C such that the big quantum product *a for a in U is analytic. Now U together with the intersection form g = <·,·> is a (complex) Frobenius manifold.

The second large class of examples of Frobenius manifolds come from the singularity theory. Namely, the space of miniversal deformations of an isolated singularity has a Frobenius manifold structure. This Frobenius manifold structure also relates to Kyoji Saito's primitive forms.

Related Research Articles

Differential geometry Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century.

Lie group Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group whose elements are organized continuously and smoothly, as opposed to discrete groups, where the elements are separated—this makes Lie groups differentiable manifolds. In rough terms, a Lie group is a continuous group: it is a group whose elements are described by several real parameters. As such, Lie groups provide a natural model for the concept of continuous symmetry, such as rotational symmetry in three dimensions. Lie groups are widely used in many parts of modern mathematics and physics.

Hamiltonian mechanics Branch of analytical mechanics

Hamiltonian mechanics is a mathematically sophisticated formulation of classical mechanics. Historically, it contributed to the formulation of statistical mechanics and quantum mechanics. Hamiltonian mechanics was first formulated by William Rowan Hamilton in 1833, starting from Lagrangian mechanics, a previous reformulation of classical mechanics introduced by Joseph Louis Lagrange in 1788. Like Lagrangian mechanics, Hamiltonian mechanics is equivalent to Newton's laws of motion in the framework of classical mechanics.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the symplectic structure of phase space, and is called a canonical transformation.

In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M where a Minkowski functionalF(x,−) is provided on each tangent space TxM, that enables one to define the length of any smooth curve γ : [a,b] → M as

In mathematics, an almost complex manifold is a smooth manifold equipped with a smooth linear complex structure on each tangent space. Every complex manifold is an almost complex manifold, but there are almost complex manifolds that are not complex manifolds. Almost complex structures have important applications in symplectic geometry.

Affine connection Construct allowing differentiation of tangent vector fields of manifolds

In Differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. The notion of an affine connection has its roots in 19th-century geometry and tensor calculus, but was not fully developed until the early 1920s, by Élie Cartan and Hermann Weyl. The terminology is due to Cartan and has its origins in the identification of tangent spaces in Euclidean space Rn by translation: the idea is that a choice of affine connection makes a manifold look infinitesimally like Euclidean space not just smoothly, but as an affine space.

In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.

In mathematics, certain systems of partial differential equations are usefully formulated, from the point of view of their underlying geometric and algebraic structure, in terms of a system of differential forms. The idea is to take advantage of the way a differential form restricts to a submanifold, and the fact that this restriction is compatible with the exterior derivative. This is one possible approach to certain over-determined systems, for example, including Lax pairs of integrable systems. A Pfaffian system is specified by 1-forms alone, but the theory includes other types of example of differential system. To elaborate, a Pfaffian system is a set of 1-forms on a smooth manifold.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point on an object the same distance in the direction of the Killing vector will not distort distances on the object.

In differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a G-subbundle of the tangent frame bundle FM of M.

Differentiable manifold Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. Any manifold can be described by a collection of charts, also known as an atlas. One may then apply ideas from calculus while working within the individual charts, since each chart lies within a linear space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

The gauge covariant derivative is a variation of the covariant derivative used in general relativity. If a theory has gauge transformations, it means that some physical properties of certain equations are preserved under those transformations. Likewise, the gauge covariant derivative is the ordinary derivative modified in such a way as to make it behave like a true vector operator, so that equations written using the covariant derivative preserve their physical properties under gauge transformations.

In mathematics, specifically in symplectic topology and algebraic geometry, a quantum cohomology ring is an extension of the ordinary cohomology ring of a closed symplectic manifold. It comes in two versions, called small and big; in general, the latter is more complicated and contains more information than the former. In each, the choice of coefficient ring significantly affects its structure, as well.

In mathematics, more precisely in differential geometry, a soldering of a fiber bundle to a smooth manifold is a manner of attaching the fibers to the manifold in such a way that they can be regarded as tangent. Intuitively, soldering expresses in abstract terms the idea that a manifold may have a point of contact with a certain model Klein geometry at each point. In extrinsic differential geometry, the soldering is simply expressed by the tangency of the model space to the manifold. In intrinsic geometry, other techniques are needed to express it. Soldering was introduced in this general form by Charles Ehresmann in 1950.

In the mathematical field of differential topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the commutator of vector fields, is an operator that assigns to any two vector fields X and Y on a smooth manifold M a third vector field denoted [X, Y].

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

A Lie bialgebroid is a mathematical structure in the area of non-Riemannian differential geometry. In brief a Lie bialgebroid are two compatible Lie algebroids defined on dual vector bundles. They form the vector bundle version of a Lie bialgebra.

References

  1. B. Dubrovin: Geometry of 2D topological field theories. In: Springer LNM, 1620 (1996), pp. 120–348.

2. Yu.I. Manin, S.A. Merkulov: Semisimple Frobenius (super)manifolds and quantum cohomology of Pr, Topol. Methods in Nonlinear Analysis 9 (1997), pp. 107–161