Fulvalene

Last updated
Fulvalene
Fulvalen.png
Pentafulvalene-3D-spacefill.png
Names
Preferred IUPAC name
[1,1′-Bi(cyclopentylidene)]-2,2′,4,4′-tetraene
Other names
Bicyclopentyliden-2,4,2′,4′-tetraene
1,1′-Bi[cyclopentadienylidene]
Pentafulvalene
Bicyclopentadienylidene
[5,5′]Bicyclopentadienylidene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C10H8/c1-2-6-9(5-1)10-7-3-4-8-10/h1-8H Yes check.svgY
    Key: XEOSBIMHSUFHQH-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C10H8/c1-2-6-9(5-1)10-7-3-4-8-10/h1-8H
    Key: XEOSBIMHSUFHQH-UHFFFAOYAP
  • C=1\C=C/C(/C=1)=C2\C=C/C=C2
Properties
C10H8
Molar mass 128.174 g·mol−1
Density 1.129 g/ml
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Fulvalene (bicyclopentadienylidene) is the member of the fulvalene family with the molecular formula C10H8. It is of theoretical interest as one of the simplest non-benzenoid conjugated hydrocarbons. Fulvalene is an unstable isomer of the more common benzenoid aromatic compounds naphthalene and azulene. Fulvalene consists of two 5-membered rings, each with two double bonds, joined by yet a fifth double bond. It has D2h symmetry.

Contents

History

Biferrocene and bis(fulvalene)diiron (not shown) are complexes of the fulvalene dianion. Biferrocene.svg
Biferrocene and bis(fulvalene)diiron (not shown) are complexes of the fulvalene dianion.

An earlier attempt at synthesis of fulvalene in 1951 by Pauson and Kealy resulted in the accidental discovery of ferrocene. [1] Its synthesis was first reported in 1958 by E. A. Matzner, working under William von Eggers Doering. [2] In this method, the cyclopentadienyl anion is coupled with iodine to the dihydrofulvalene. Double deprotonation of the dihydrofulvalene with n-butyllithium gives the dilithio derivative, which is oxidized by oxygen. Fulvalene was spectroscopically observed at −196 °C (77 K) from photolysis of diazocyclopentadiene, which induces dimerization of cyclopentadiene-derived carbenes. [3] The compound was isolated in 1986 [4] and was found to be nonaromatic. Above −50 °C (223 K) it dimerizes by a Diels–Alder reaction.

Derivatives

Perchlorofulvalene (C4Cl4C)2 is quite stable in contrast to fulvalene itself. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Allenes</span> Any organic compound containing a C=C=C group

In organic chemistry, allenes are organic compounds in which one carbon atom has double bonds with each of its two adjacent carbon atoms. Allenes are classified as cumulated dienes. The parent compound of this class is propadiene, which is itself also called allene. An group of the structure R2C=C=CR− is called allenyl, where R is H or some alkyl group. Compounds with an allene-type structure but with more than three carbon atoms are members of a larger class of compounds called cumulenes with X=C=Y bonding.

<span class="mw-page-title-main">Alkyne</span> Hydrocarbon compound containing one or more C≡C bonds

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.

<span class="mw-page-title-main">Ketene</span> Organic compound of the form >C=C=O

In organic chemistry, a ketene is an organic compound of the form RR'C=C=O, where R and R' are two arbitrary monovalent chemical groups. The name may also refer to the specific compound ethenone H2C=C=O, the simplest ketene.

<span class="mw-page-title-main">Metallocene</span>

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride or vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

Ferrocene is an organometallic compound with the formula Fe(C5H5)2. The molecule is a complex consisting of two cyclopentadienyl rings bound to a central iron atom. It is an orange solid with a camphor-like odor, that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation Fe(C5H5)+2. Ferrocene and the ferrocenium cation are sometimes abbreviated as Fc and Fc+ respectively.

Cyclopentadiene is an organic compound with the formula C5H6. It is often abbreviated CpH because the cyclopentadienyl anion is abbreviated Cp.

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agent. It is used as a water cleaner and as an etchant for metals.

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are organometallic compounds containing tin carbon bonds. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

(<i>E</i>)-Stilbene Chemical compound

(E)-Stilbene, commonly known as trans-stilbene, is an organic compound represented by the condensed structural formula C6H5CH=CHC6H5. Classified as a diarylethene, it features a central ethylene moiety with one phenyl group substituent on each end of the carbon–carbon double bond. It has an (E) stereochemistry, meaning that the phenyl groups are located on opposite sides of the double bond, the opposite of its geometric isomer, cis-stilbene. Trans-stilbene occurs as a white crystalline solid at room temperature and is highly soluble in organic solvents. It can be converted to cis-stilbene photochemically, and further reacted to produce phenanthrene.

<span class="mw-page-title-main">Cyanamide</span> Chemical compound featuring a nitrile group attached to an amino group

Cyanamide is an organic compound with the formula CN2H2. This white solid is widely used in agriculture and the production of pharmaceuticals and other organic compounds. It is also used as an alcohol-deterrent drug. The molecule features a nitrile group attached to an amino group. Derivatives of this compound are also referred to as cyanamides, the most common being calcium cyanamide (CaCN2).

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

<span class="mw-page-title-main">Nitrosobenzene</span> Chemical compound

Nitrosobenzene is the organic compound with the formula C6H5NO. It is one of the prototypical organic nitroso compounds. Characteristic of its functional group, it is a dark green species that exists in equilibrium with its pale yellow dimer. Both monomer and dimer are diamagnetic.

<span class="mw-page-title-main">Dicobalt octacarbonyl</span> Chemical compound

Dicobalt octacarbonyl is an organocobalt compound with composition Co2(CO)8. This metal carbonyl is used as a reagent and catalyst in organometallic chemistry and organic synthesis, and is central to much known organocobalt chemistry. It is the parent member of a family of hydroformylation catalysts. Each molecule consists of two cobalt atoms bound to eight carbon monoxide ligands, although multiple structural isomers are known. Some of the carbonyl ligands are labile.

The Wulff–Dötz reaction (also known as the Dötz reaction or the benzannulation reaction of the Fischer carbene complexes) is the chemical reaction of an aromatic or vinylic alkoxy pentacarbonyl chromium carbene complex with an alkyne and carbon monoxide to give a Cr(CO)3-coordinated substituted phenol. Several reviews have been published. It is named after the German chemist Karl Heinz Dötz (b. 1943) and the American chemist William D. Wulff (b. 1949) at Michigan State University. The reaction was first discovered by Karl Dötz and was extensively developed by his group and W. Wulff's group. They subsequently share the name of the reaction.

<span class="mw-page-title-main">Organotitanium chemistry</span>

Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis, and reactions. Organotitanium compounds in organometallic chemistry contain carbon-titanium chemical bonds. They are reagents in organic chemistry and are involved in major industrial processes.

<span class="mw-page-title-main">Metallacycle</span>

In organometallic chemistry, a metallacycle is a derivative of a carbocyclic compound wherein a metal has replaced at least one carbon center; this is to some extent similar to heterocycles. Metallacycles appear frequently as reactive intermediates in catalysis, e.g. olefin metathesis and alkyne trimerization. In organic synthesis, directed ortho metalation is widely used for the functionalization of arene rings via C-H activation. One main effect that metallic atom substitution on a cyclic carbon compound is distorting the geometry due to the large size of typical metals.

<span class="mw-page-title-main">Rhodocene</span> Organometallic chemical compound

Rhodocene is a chemical compound with the formula [Rh(C5H5)2]. Each molecule contains an atom of rhodium bound between two planar aromatic systems of five carbon atoms known as cyclopentadienyl rings in a sandwich arrangement. It is an organometallic compound as it has (haptic) covalent rhodium–carbon bonds. The [Rh(C5H5)2] radical is found above 150 °C (302 °F) or when trapped by cooling to liquid nitrogen temperatures (−196 °C [−321 °F]). At room temperature, pairs of these radicals join via their cyclopentadienyl rings to form a dimer, a yellow solid.

<span class="mw-page-title-main">Xylylene</span>

In organic chemistry, a xylylene (sometimes quinone-dimethide) is any of the constitutional isomers having the formula C6H4(CH2)2. These compounds are related to the corresponding quinones and quinone methides by replacement of the oxygen atoms by CH2 groups. ortho- and para-xylylene are best known, although neither is stable in solid or liquid form. The meta form is a diradical. Certain substituted derivatives of xylylenes are however highly stable, such as tetracyanoquinodimethane and the xylylene dichlorides.

Prof Peter Ludwig Israel Pauson FRSE FRIC (1925–2013) was a German–Jewish emigrant who settled in Britain and who is remembered for his contributions to chemistry, most notably the Pauson–Khand reaction and as joint discoverer of ferrocene.

Thomas Joseph Kealy was an American chemist.

References

  1. T. J. Kealy, P. L. Pauson (1951). "A New Type of Organo-Iron Compound". Nature. 168 (4285): 1039–1040. Bibcode:1951Natur.168.1039K. doi:10.1038/1681039b0. S2CID   4181383.
  2. Dissertation Abstracts Int'l 26-06 page 3270 6411876.
  3. Demore, William B.; Pritchard, H. O.; Davidson, Norman (1959). "Photochemical Experiments in Rigid Media at Low Temperatures. II. The Reactions of Methylene, Cyclopentadienylene and Diphenylmethylene". Journal of the American Chemical Society. 81 (22): 5874–5879. doi:10.1021/ja01531a008.
  4. Escher, André; Rutsch, Werner; Neuenschwander, Markus (1986). "Synthese von Pentafulvalen durch oxidative Kupplung von Cyclopentadienid mittels Kupfer(II)-chlorid". Helvetica Chimica Acta. 69 (7): 1644–1654. doi:10.1002/hlca.19860690719.
  5. Mark, V. (1966). "Perchlorofulvalene". Organic Syntheses. 46: 93. doi:10.15227/orgsyn.046.0093.