GGA2

Last updated
GGA2
Protein GGA2 PDB 1mhq.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases GGA2 , VEAR, golgi associated, gamma adaptin ear containing, ARF binding protein 2
External IDs OMIM: 606005 MGI: 1921355 HomoloGene: 22860 GeneCards: GGA2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_015044
NM_138640

NM_028758

RefSeq (protein)

NP_055859

NP_083034

Location (UCSC) Chr 16: 23.46 – 23.52 Mb Chr 7: 121.59 – 121.62 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ADP-ribosylation factor-binding protein GGA2 is a protein that in humans is encoded by the GGA2 gene. [5] [6] [7]

Contents

Function

This gene encodes a member of the Golgi-localized, gamma adaptin ear-containing, ARF-binding (GGA) family. This family includes ubiquitous coat proteins that regulate the trafficking of proteins between the trans-Golgi network and the lysosome. These proteins share an amino-terminal VHS domain which mediates sorting of the mannose 6-phosphate receptors at the trans-Golgi network. They also contain a carboxy-terminal region with homology to the ear domain of gamma-adaptins. This family member may play a significant role in cargo molecules regulation and clathrin-coated vesicle assembly. [7]

Interactions

GGA2 has been shown to interact with RABEP1, [8] Sortilin 1, [9] [10] BACE2 [11] and CLINT1. [12] [13]

Related Research Articles

<span class="mw-page-title-main">Vesicular transport adaptor protein</span>

Vesicular transport adaptor proteins are proteins involved in forming complexes that function in the trafficking of molecules from one subcellular location to another. These complexes concentrate the correct cargo molecules in vesicles that bud or extrude off of one organelle and travel to another location, where the cargo is delivered. While some of the details of how these adaptor proteins achieve their trafficking specificity has been worked out, there is still much to be learned.

<span class="mw-page-title-main">Insulin-like growth factor 2 receptor</span> Protein-coding gene in the species Homo sapiens

Insulin-like growth factor 2 receptor (IGF2R), also called the cation-independent mannose-6-phosphate receptor (CI-MPR) is a protein that in humans is encoded by the IGF2R gene. IGF2R is a multifunctional protein receptor that binds insulin-like growth factor 2 (IGF2) at the cell surface and mannose-6-phosphate (M6P)-tagged proteins in the trans-Golgi network.

<span class="mw-page-title-main">ARF1</span> Protein-coding gene in the species Homo sapiens

ADP-ribosylation factor 1 is a protein that in humans is encoded by the ARF1 gene.

<span class="mw-page-title-main">GGA1</span> Protein-coding gene in the species Homo sapiens

ADP-ribosylation factor-binding protein GGA1 is a protein that in humans is encoded by the GGA1 gene.

<span class="mw-page-title-main">AP2M1</span> Protein-coding gene in the species Homo sapiens

AP-2 complex subunit mu is a protein that in humans is encoded by the AP2M1 gene.

<span class="mw-page-title-main">AP1M1</span> Protein-coding gene in the species Homo sapiens

AP-1 complex subunit mu-1 is a protein that in humans is encoded by the AP1M1 gene.

<span class="mw-page-title-main">GGA3</span> Protein-coding gene in the species Homo sapiens

ADP-ribosylation factor-binding protein GGA3 is a protein that in humans is encoded by the GGA3 gene.

<span class="mw-page-title-main">AP1G1</span> Protein-coding gene in the species Homo sapiens

AP-1 complex subunit gamma-1 is a protein that in humans is encoded by the AP1G1 gene.

<span class="mw-page-title-main">Sortilin 1</span> Protein-coding gene in the species Homo sapiens

Sortilin (SORT1) is a protein that in humans is encoded by the SORT1 gene on chromosome 1. This protein is a type I membrane glycoprotein in the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors. While it is ubiquitously expressed in many tissues, sortilin is most abundant in the central nervous system. At the cellular level, sortilin functions in protein transport between the Golgi apparatus, endosome, lysosome, and plasma membrane, leading to its involvement in multiple biological processes such as glucose and lipid metabolism as well as neural development and cell death. Moreover, the function and role of sortilin is now emerging in several major human diseases such as hypertension, atherosclerosis, coronary artery disease, Alzheimer’s disease, and cancer. The SORT1 gene also contains one of 27 loci associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">AP1B1</span> Protein-coding gene in the species Homo sapiens

AP-1 complex subunit beta-1 is a protein that in humans is encoded by the AP1B1 gene.

<span class="mw-page-title-main">ARF3</span> Protein-coding gene in the species Homo sapiens

ADP-ribosylation factor 3 is a protein that in humans is encoded by the ARF3 gene.

<span class="mw-page-title-main">AP3D1</span> Protein-coding gene in the species Homo sapiens

AP-3 complex subunit delta-1 is a protein that in humans is encoded by the AP3D1 gene.

<span class="mw-page-title-main">AP1S1</span> Protein-coding gene in the species Homo sapiens

AP-1 complex subunit sigma-1A is a protein that in humans is encoded by the AP1S1 gene.

<span class="mw-page-title-main">AP1G2</span> Protein-coding gene in the species Homo sapiens

AP-1 complex subunit gamma-like 2 is a protein that in humans is encoded by the AP1G2 gene.

<span class="mw-page-title-main">Synergin gamma</span> Protein-coding gene in the species Homo sapiens

Synergin gamma also known as AP1 subunit gamma-binding protein 1 (AP1GBP1) is a protein that in humans is encoded by the SYNRG gene.

<span class="mw-page-title-main">RABEP1</span> Protein-coding gene in the species Homo sapiens

Rab GTPase-binding effector protein 1 is an enzyme that in humans is encoded by the RABEP1 gene. It belongs to rabaptin protein family.

<span class="mw-page-title-main">Cation-dependent mannose-6-phosphate receptor</span> Protein-coding gene in the species Homo sapiens

In the fields of biochemistry and cell biology, the cation-dependent mannose-6-phosphate receptor (CD-MPR) also known as the 46 kDa mannose 6-phosphate receptor is a protein that in humans is encoded by the M6PR gene.

<span class="mw-page-title-main">LRP3</span> Protein-coding gene in the species Homo sapiens

Low density lipoprotein receptor-related protein 3 (LRP-3) is a protein that in humans is encoded by the LRP3 gene.

Clathrin adaptor proteins, also known as adaptins, are vesicular transport adaptor proteins associated with clathrin. These proteins are synthesized in the ribosomes, processed in the endoplasmic reticulum and transported from the Golgi apparatus to the trans-Golgi network, and from there via small carrier vesicles to their final destination compartment. The association between adaptins and clathrin are important for vesicular cargo selection and transporting. Clathrin coats contain both clathrin and adaptor complexes that link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. Therefore, adaptor proteins are responsible for the recruitment of cargo molecules into a growing clathrin-coated pits. The two major types of clathrin adaptor complexes are the heterotetrameric vesicular transport adaptor proteins (AP1-5), and the monomeric GGA adaptors. Adaptins are distantly related to the other main type of vesicular transport proteins, the coatomer subunits, sharing between 16% and 26% of their amino acid sequence.

<span class="mw-page-title-main">Beta2-adaptin C-terminal domain</span>

The C-terminal domain ofBeta2-adaptin is a protein domain is involved in cell trafficking by aiding import and export of substances in and out of the cell.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000103365 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030872 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hirst J, Lui WW, Bright NA, Totty N, Seaman MN, Robinson MS (Apr 2000). "A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome". The Journal of Cell Biology. 149 (1): 67–80. doi:10.1083/jcb.149.1.67. PMC   2175106 . PMID   10747088.
  6. Boman AL, Zhang CJ, Zhu X, Kahn RA (Apr 2000). "A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi". Molecular Biology of the Cell. 11 (4): 1241–55. doi:10.1091/mbc.11.4.1241. PMC   14844 . PMID   10749927.
  7. 1 2 "Entrez Gene: GGA2 golgi associated, gamma adaptin ear containing, ARF binding protein 2".
  8. Mattera R, Arighi CN, Lodge R, Zerial M, Bonifacino JS (Jan 2003). "Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex". The EMBO Journal. 22 (1): 78–88. doi:10.1093/emboj/cdg015. PMC   140067 . PMID   12505986.
  9. Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, Pohlmann R, Petersen CM (May 2001). "The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein". The EMBO Journal. 20 (9): 2180–90. doi:10.1093/emboj/20.9.2180. PMC   125444 . PMID   11331584.
  10. Jacobsen L, Madsen P, Nielsen MS, Geraerts WP, Gliemann J, Smit AB, Petersen CM (Jan 2002). "The sorLA cytoplasmic domain interacts with GGA1 and -2 and defines minimum requirements for GGA binding". FEBS Letters. 511 (1–3): 155–8. doi: 10.1016/S0014-5793(01)03299-9 . PMID   11821067. S2CID   21977507.
  11. He X, Chang WP, Koelsch G, Tang J (Jul 2002). "Memapsin 2 (beta-secretase) cytosolic domain binds to the VHS domains of GGA1 and GGA2: implications on the endocytosis mechanism of memapsin 2". FEBS Letters. 524 (1–3): 183–7. doi: 10.1016/S0014-5793(02)03052-1 . PMID   12135764. S2CID   42042430.
  12. Wasiak S, Legendre-Guillemin V, Puertollano R, Blondeau F, Girard M, de Heuvel E, Boismenu D, Bell AW, Bonifacino JS, McPherson PS (Sep 2002). "Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics". The Journal of Cell Biology. 158 (5): 855–62. doi:10.1083/jcb.200205078. PMC   2173151 . PMID   12213833.
  13. Kalthoff C, Groos S, Kohl R, Mahrhold S, Ungewickell EJ (Nov 2002). "Clint: a novel clathrin-binding ENTH-domain protein at the Golgi". Molecular Biology of the Cell. 13 (11): 4060–73. doi:10.1091/mbc.E02-03-0171. PMC   133614 . PMID   12429846.

Further reading