Sortilin 1

Last updated
SORT1
Protein SORT1 PDB 3F6K.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SORT1 , Gp95, LDLCQ6, NT3, NTR3, Sortilin 1
External IDs OMIM: 602458 MGI: 1338015 HomoloGene: 136097 GeneCards: SORT1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001205228
NM_002959

NM_001271599
NM_019972

RefSeq (protein)

NP_001192157
NP_002950

NP_001258528
NP_064356

Location (UCSC) Chr 1: 109.31 – 109.4 Mb Chr 3: 108.19 – 108.27 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Sortilin (SORT1) is a protein that in humans is encoded by the SORT1 gene on chromosome 1. [5] This protein is a type I membrane glycoprotein in the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors. While it is ubiquitously expressed in many tissues, [6] sortilin is most abundant in the central nervous system. [7] At the cellular level, sortilin functions in protein transport between the Golgi apparatus, endosome, lysosome, and plasma membrane, leading to its involvement in multiple biological processes such as glucose and lipid metabolism as well as neural development and cell death. [8] [9] [10] [11] [12] Moreover, the function and role of sortilin is now emerging in several major human diseases such as hypertension, atherosclerosis, coronary artery disease, Alzheimer’s disease, and cancer. [13] [14] [15] [16] The SORT1 gene also contains one of 27 loci associated with increased risk of coronary artery disease. [17]

Contents

Structure

Gene

The SORT1 gene resides on chromosome 1 at the band 1p13.3 and includes 23 exons. [5] This gene encodes 2 isoforms through alternative splicing. [18]

Protein

Sortilin is a member of the Vps10p sorting receptor family. [7] Crystallization studies of the protein reveal that, when complexed with the ligand neurotensin, the Vps10 ectodomain of sortilin forms a ten-bladed beta-propeller structure with an inner tunnel that contains multiple ligand binding sites. [19] To prevent premature ligand binding during its synthesis, the precursor protein of sortilin contains a 44-amino acid pro-peptide that serves as a chaperone for the Vps10p domain. [20] In addition, two hydrophobic loops have been detected in this domain and act to anchor the protein in the cell membrane. [21] Sortilin has also been shown to undergo a conformational change and form a protein dimer in acidic conditions similar to ones found in the endosome, indicating a double mechanism for low pH-induced ligand release and possibly signaling towards recycling of the receptor. [22]

Function

In humans, sortilin is expressed over a wide range of cell types and tissues such as the brain, spinal cord, adrenal gland, thyroid, B-lymphocytes, adipocytes, skeletal muscle, and heart. [23] As a sorting receptor on the cell surface and on the endoplasmic reticulum-Golgi apparatus within the cell, sortilin is involved in the transport of a wide variety of intracellular proteins between the trans-Golgi network, endosome, lysosome, and secretory granules, as well as the plasma membrane. [8] This molecular function enables sortilin to participate in various biological processes, including the transport of GLUT4 to the plasma membrane of fat and skeletal muscle cells in response to insulin. [9] It also mediates the interaction between proNGF and the p75NTR:sortilin complex by acting as a co-receptor to signal cell death. [12] [20] The fine regulation of the brain-derived neurotrophic factor (BDNF) by sortilin is required for both neuronal and tumor cell survival. [24] Moreover, sortilin has been implicated in LDL-cholesterol metabolism, VLDL secretion, and PCSK9 secretion, and thus plays a role in the development of atherosclerotic lesions. [10] [11] It modulates lipid metabolism in adipocytes, hepatocytes, and macrophages. [25] Other processes involving sortilin include endocytosis, [8] negative regulation of lipoprotein lipase activity, [26] myotube differentiation, [27] ossification, [28] and regulation of gene expression. [27]

Clinical significance

Given its function in facilitating lysosomal degradation or recycling of ligands in lipid metabolism [11] [14] [29] [30] [31] and the neural system, [32] sortilin likely plays an important role in the underlying mechanisms and pathophysiology of atherogenesis and coronary artery disease, as well as in neurological disorders. For example, sortilin has been identified as an important receptor for brain apolipoprotein E (APOE) metabolism, which is implicated in the underlying mechanisms of Alzheimer’s disease. [32] [33] [34] [35] A significant role for sortilin has recently also been reported in the field of oncology, as it has been detected in several cancer cell lines. Notably, human cancerous epithelial cells exhibited increased levels of sortilin as compared to normal epithelial tissues. Furthermore, it appears that sortilin participates in the progression of breast cancer and contributes to tumor cell adhesion and invasion. [15] [16]

Clinical marker

In 2007, chromosome 1p13.3 was identified as a promising locus through a genome-wide approach in patients with coronary artery disease. [36] Subsequently, accumulating evidence suggests that the SORT1 gene at the 1p13 locus is an important risk factor for coronary artery disease, which is attributed to lipid metabolism disorders. [36] [37] [38] Several single nucleotide polymorphisms of the SORT1 gene have a genetic association between serum blood lipid levels and the pathogenesis of cardiometabolic syndrome, including obesity, hypertension, and coronary artery disease. [25] As the role of sortilin in lipid metabolism and the development of atherosclerosis has been established, a recent study further reported that increased release of soluble sortilin from platelets, measured as circulating sortilin, may be associated with in vivo platelet activation. [39] This observation also indicates that sortilin has a potential application as a clinical biomarker for diagnosis and prognosis. [10] [39] Additionally, a multi-locus genetic risk score study, based on a combination of 27 loci including the SORT1 gene, identified individuals at increased risk for both incident and recurrent coronary artery disease events, as well as an enhanced clinical benefit from statin therapy. The study was based on a community cohort study (the Malmo Diet and Cancer study) and four additional randomized controlled trials of primary prevention cohorts (JUPITER and ASCOT) and secondary prevention cohorts (CARE and PROVE IT-TIMI 22). [17]

Interactions

Sortilin has been shown to interact with GGA1 [40] and GGA2. [8] [40]

Interactive Pathway Map

Sortilin participates in interactions within the trans-Golgi network vesicle budding and BDNF signaling pathways.

See also

Related Research Articles

Scavenger receptors are a large and diverse superfamily of cell surface receptors. Its properties were first recorded in 1970 by Drs. Brown and Goldstein, with the defining property being the ability to bind and remove modified low density lipoproteins (LDL). Today scavenger receptors are known to be involved in a wide range of processes, such as: homeostasis, apoptosis, inflammatory diseases and pathogen clearance. Scavenger receptors are mainly found on myeloid cells and other cells that bind to numerous ligands, primarily endogenous and modified host-molecules together with pathogen-associated molecular patterns(PAMPs), and remove them. The Kupffer cells in the liver are particularly rich in scavenger receptors, includes SR-A I, SR-A II, and MARCO.

<span class="mw-page-title-main">LDL receptor</span> Mammalian protein found in Homo sapiens

The low-density lipoprotein receptor (LDL-R) is a mosaic protein of 839 amino acids that mediates the endocytosis of cholesterol-rich low-density lipoprotein (LDL). It is a cell-surface receptor that recognizes apolipoprotein B100 (ApoB100), which is embedded in the outer phospholipid layer of very low-density lipoprotein (VLDL), their remnants—i.e. intermediate-density lipoprotein (IDL), and LDL particles. The receptor also recognizes apolipoprotein E (ApoE) which is found in chylomicron remnants and IDL. In humans, the LDL receptor protein is encoded by the LDLR gene on chromosome 19. It belongs to the low density lipoprotein receptor gene family. It is most significantly expressed in bronchial epithelial cells and adrenal gland and cortex tissue.

Retromer is a complex of proteins that has been shown to be important in recycling transmembrane receptors from endosomes to the trans-Golgi network (TGN) and directly back to the plasma membrane. Mutations in retromer and its associated proteins have been linked to Alzheimer's and Parkinson's diseases.

<span class="mw-page-title-main">Low-affinity nerve growth factor receptor</span> Human protein-coding gene

The p75 neurotrophin receptor (p75NTR) was first identified in 1973 as the low-affinity nerve growth factor receptor (LNGFR) before discovery that p75NTR bound other neurotrophins equally well as nerve growth factor. p75NTR is a neurotrophic factor receptor. Neurotrophic factor receptors bind Neurotrophins including Nerve growth factor, Neurotrophin-3, Brain-derived neurotrophic factor, and Neurotrophin-4. All neurotrophins bind to p75NTR. This also includes the immature pro-neurotrophin forms. Neurotrophic factor receptors, including p75NTR, are responsible for ensuring a proper density to target ratio of developing neurons, refining broader maps in development into precise connections. p75NTR is involved in pathways that promote neuronal survival and neuronal death.

<span class="mw-page-title-main">Liver X receptor</span> Nuclear receptor

The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized.

<span class="mw-page-title-main">SORL1</span> Protein-coding gene in the species Homo sapiens

Sortilin-related receptor, L(DLR class) A repeats containing is a protein that in humans is encoded by the SORL1 gene.

Neurotensin receptors are transmembrane receptors that bind the neurotransmitter neurotensin. Two of the receptors encoded by the NTSR1 and NTSR2 genes contain seven transmembrane helices and are G protein coupled. Numerous crystal structures have been reported for the neurotensin receptor 1 (NTS1). The third receptor has a single transmembrane domain and is encoded by the SORT1 gene.

<span class="mw-page-title-main">LDL-receptor-related protein-associated protein</span> Protein-coding gene in the species Homo sapiens

Low density lipoprotein receptor-related protein-associated protein 1 also known as LRPAP1 or RAP is a chaperone protein which in humans is encoded by the LRPAP1 gene.

<span class="mw-page-title-main">CX3C motif chemokine receptor 1</span> Protein-coding gene in the species Homo sapiens

CX3C motif chemokine receptor 1 (CX3CR1), also known as the fractalkine receptor or G-protein coupled receptor 13 (GPR13), is a transmembrane protein of the G protein-coupled receptor 1 (GPCR1) family and the only known member of the CX3C chemokine receptor subfamily.

<span class="mw-page-title-main">Peroxisome proliferator-activated receptor alpha</span> Nuclear receptor protein found in humans

Peroxisome proliferator-activated receptor alpha (PPAR-α), also known as NR1C1, is a nuclear receptor protein functioning as a transcription factor that in humans is encoded by the PPARA gene. Together with peroxisome proliferator-activated receptor delta and peroxisome proliferator-activated receptor gamma, PPAR-alpha is part of the subfamily of peroxisome proliferator-activated receptors. It was the first member of the PPAR family to be cloned in 1990 by Stephen Green and has been identified as the nuclear receptor for a diverse class of rodent hepatocarcinogens that causes proliferation of peroxisomes.

<span class="mw-page-title-main">OLR1</span> Protein-coding gene in the species Homo sapiens

Oxidized low-density lipoprotein receptor 1 also known as lectin-type oxidized LDL receptor 1 (LOX-1) is a protein that in humans is encoded by the OLR1 gene.

<span class="mw-page-title-main">LRP2</span> Mammalian protein found in Homo sapiens

Low density lipoprotein receptor-related protein 2 also known as LRP-2 or megalin is a protein which in humans is encoded by the LRP2 gene.

<span class="mw-page-title-main">GGA1</span> Protein-coding gene in the species Homo sapiens

ADP-ribosylation factor-binding protein GGA1 is a protein that in humans is encoded by the GGA1 gene.

<span class="mw-page-title-main">LRP1</span> Mammalian protein found in Homo sapiens

Low density lipoprotein receptor-related protein 1 (LRP1), also known as alpha-2-macroglobulin receptor (A2MR), apolipoprotein E receptor (APOER) or cluster of differentiation 91 (CD91), is a protein forming a receptor found in the plasma membrane of cells involved in receptor-mediated endocytosis. In humans, the LRP1 protein is encoded by the LRP1 gene. LRP1 is also a key signalling protein and, thus, involved in various biological processes, such as lipoprotein metabolism and cell motility, and diseases, such as neurodegenerative diseases, atherosclerosis, and cancer.

<span class="mw-page-title-main">PCSK9</span> Mammalian protein found in humans

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme encoded by the PCSK9 gene in humans on chromosome 1. It is the 9th member of the proprotein convertase family of proteins that activate other proteins. Similar genes (orthologs) are found across many species. As with many proteins, PCSK9 is inactive when first synthesized, because a section of peptide chains blocks their activity; proprotein convertases remove that section to activate the enzyme. The PCSK9 gene also contains one of 27 loci associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">Neurotensin receptor 2</span> Protein-coding gene in the species Homo sapiens

Neurotensin receptor type 2 is a protein that in humans is encoded by the NTSR2 gene.

<span class="mw-page-title-main">Neurotensin receptor 1</span> Protein-coding gene in the species Homo sapiens

Neurotensin receptor type 1 is a protein that in humans is encoded by the NTSR1 gene. For a crystal structure of NTS1, see pdb code 4GRV. In addition, high-resolution crystal structures have been determined in complex with the peptide full agonist NTS8-13, the non-peptide full agonist SRI-9829, the partial agonist RTI-3a, and the antagonists / inverse agonists SR48692 and SR142948A, as well as in the ligand-free apo state., see PDB codes 6YVR (NTSR1-H4X:NTS8–13), 6Z4V (NTSR1-H4bmX:NTS8–13), 6Z8N (NTSR1-H4X:SRI-9829), 6ZA8 (NTSR1-H4X:RTI-3a), 6Z4S (NTSR1-H4bmX:SR48692), 6ZIN (NTSR1-H4X:SR48692), 6Z4Q, and 6Z66.

<span class="mw-page-title-main">GGA2</span> Protein-coding gene in the species Homo sapiens

ADP-ribosylation factor-binding protein GGA2 is a protein that in humans is encoded by the GGA2 gene.

<span class="mw-page-title-main">VPS26A</span> Protein-coding gene in the species Homo sapiens

Vacuolar protein sorting-associated protein 26A is a protein that in humans is encoded by the VPS26A gene.

<span class="mw-page-title-main">SorCS2</span> Gene is found on chromosome 4

The SorCS2 gene is found on chromosome 4 (4p16.1), and is composed of 28 exons. The N-terminal exons which encode the Vps10p domain are spaced by large introns. The functional receptor protein is largely present in the brain. It is 1109 amino acids long, largely neutral, and has a single transmembrane pass....

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000134243 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000068747 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: SORT1 sortilin 1".
  6. "BioGPS - your Gene Portal System". biogps.org. Retrieved 2016-08-16.
  7. 1 2 Andersen JL, Schrøder TJ, Christensen S, Strandbygård D, Pallesen LT, García-Alai MM, et al. (February 2014). "Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor-ligand complex". Acta Crystallographica. Section D, Biological Crystallography. 70 (Pt 2): 451–460. doi:10.1107/S1399004713030149. PMC   3940197 . PMID   24531479.
  8. 1 2 3 4 Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, et al. (May 2001). "The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein". The EMBO Journal. 20 (9): 2180–2190. doi:10.1093/emboj/20.9.2180. PMC   125444 . PMID   11331584.
  9. 1 2 Huang G, Buckler-Pena D, Nauta T, Singh M, Asmar A, Shi J, et al. (October 2013). "Insulin responsiveness of glucose transporter 4 in 3T3-L1 cells depends on the presence of sortilin". Molecular Biology of the Cell. 24 (19): 3115–3122. doi:10.1091/mbc.E12-10-0765. PMC   3784384 . PMID   23966466.
  10. 1 2 3 Patel KM, Strong A, Tohyama J, Jin X, Morales CR, Billheimer J, et al. (February 2015). "Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis". Circulation Research. 116 (5): 789–796. doi:10.1161/CIRCRESAHA.116.305811. PMC   4602371 . PMID   25593281.
  11. 1 2 3 Kjolby M, Nielsen MS, Petersen CM (April 2015). "Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease". Current Atherosclerosis Reports. 17 (4): 496. doi:10.1007/s11883-015-0496-7. PMID   25702058. S2CID   22361357.
  12. 1 2 Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, et al. (February 2004). "Sortilin is essential for proNGF-induced neuronal cell death". Nature. 427 (6977): 843–848. Bibcode:2004Natur.427..843N. doi:10.1038/nature02319. PMID   14985763. S2CID   4343450.
  13. Varzideh F, Jankauskas SS, Kansakar U, Mone P, Gambardella J, Santulli G (February 2022). "Sortilin drives hypertension by modulating sphingolipid/ceramide homeostasis and by triggering oxidative stress". The Journal of Clinical Investigation. 132 (3). doi:10.1172/JCI156624. PMC   8803317 . PMID   35104807.
  14. 1 2 Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, et al. (April 2016). "Sortilin mediates vascular calcification via its recruitment into extracellular vesicles". The Journal of Clinical Investigation. 126 (4): 1323–1336. doi:10.1172/JCI80851. PMC   4811143 . PMID   26950419.
  15. 1 2 Roselli S, Pundavela J, Demont Y, Faulkner S, Keene S, Attia J, et al. (April 2015). "Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion". Oncotarget. 6 (12): 10473–10486. doi:10.18632/oncotarget.3401. PMC   4496368 . PMID   25871389.
  16. 1 2 Wilson CM, Naves T, Al Akhrass H, Vincent F, Melloni B, Bonnaud F, et al. (2016-02-01). "A new role under sortilin's belt in cancer". Communicative & Integrative Biology. 9 (1): e1130192. doi:10.1080/19420889.2015.1130192. PMC   4802778 . PMID   27066187.
  17. 1 2 Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield M, Devlin JJ, et al. (June 2015). "Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials". Lancet. 385 (9984): 2264–2271. doi:10.1016/S0140-6736(14)61730-X. PMC   4608367 . PMID   25748612.
  18. "SORT1 - Sortilin precursor - Homo sapiens (Human) - SORT1 gene & protein". www.uniprot.org. Retrieved 2016-08-16.
  19. Quistgaard EM, Madsen P, Grøftehauge MK, Nissen P, Petersen CM, Thirup SS (January 2009). "Ligands bind to Sortilin in the tunnel of a ten-bladed beta-propeller domain". Nature Structural & Molecular Biology. 16 (1): 96–98. doi:10.1038/nsmb.1543. PMID   19122660. S2CID   205522786.
  20. 1 2 Nykjaer A, Willnow TE (April 2012). "Sortilin: a receptor to regulate neuronal viability and function". Trends in Neurosciences. 35 (4): 261–270. doi:10.1016/j.tins.2012.01.003. PMID   22341525. S2CID   28152980.
  21. Quistgaard EM, Grøftehauge MK, Madsen P, Pallesen LT, Christensen B, Sørensen ES, et al. (September 2014). "Revisiting the structure of the Vps10 domain of human sortilin and its interaction with neurotensin". Protein Science. 23 (9): 1291–1300. doi:10.1002/pro.2512. PMC   4243999 . PMID   24985322.
  22. Leloup N, Lössl P, Meijer DH, Brennich M, Heck AJ, Thies-Weesie DM, Janssen BJ (November 2017). "Low pH-induced conformational change and dimerization of sortilin triggers endocytosed ligand release". Nature Communications. 8 (1): 1708. Bibcode:2017NatCo...8.1708L. doi:10.1038/s41467-017-01485-5. PMC   5700061 . PMID   29167428.
  23. Schmidt V, Willnow TE (February 2016). "Protein sorting gone wrong--VPS10P domain receptors in cardiovascular and metabolic diseases". Atherosclerosis. 245: 194–199. doi: 10.1016/j.atherosclerosis.2015.11.027 . PMID   26724530.
  24. Akil H, Perraud A, Mélin C, Jauberteau MO, Mathonnet M (2011-01-01). "Fine-tuning roles of endogenous brain-derived neurotrophic factor, TrkB and sortilin in colorectal cancer cell survival". PLOS ONE. 6 (9): e25097. Bibcode:2011PLoSO...625097A. doi: 10.1371/journal.pone.0025097 . PMC   3180371 . PMID   21966426.
  25. 1 2 Su X, Chen L, Chen X, Dai C, Wang B (June 2022). "Emerging roles of sortilin in affecting the metabolism of glucose and lipid profiles". Bosnian Journal of Basic Medical Sciences. 22 (3): 340–352. doi:10.17305/bjbms.2021.6601. PMC   9162750 . PMID   34784266.
  26. Nielsen MS, Jacobsen C, Olivecrona G, Gliemann J, Petersen CM (March 1999). "Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase". The Journal of Biological Chemistry. 274 (13): 8832–8836. doi: 10.1074/jbc.274.13.8832 . PMID   10085125.
  27. 1 2 Ariga M, Nedachi T, Katagiri H, Kanzaki M (April 2008). "Functional role of sortilin in myogenesis and development of insulin-responsive glucose transport system in C2C12 myocytes". The Journal of Biological Chemistry. 283 (15): 10208–10220. doi: 10.1074/jbc.M710604200 . PMID   18258592.
  28. Maeda S, Nobukuni T, Shimo-Onoda K, Hayashi K, Yone K, Komiya S, Inoue I (October 2002). "Sortilin is upregulated during osteoblastic differentiation of mesenchymal stem cells and promotes extracellular matrix mineralization". Journal of Cellular Physiology. 193 (1): 73–79. doi:10.1002/jcp.10151. PMID   12209882. S2CID   32754981.
  29. Strong A, Rader DJ (June 2012). "Sortilin as a regulator of lipoprotein metabolism". Current Atherosclerosis Reports. 14 (3): 211–218. doi:10.1007/s11883-012-0248-x. PMC   7089359 . PMID   22538429.
  30. Zhong LY, Cayabyab FS, Tang CK, Zheng XL, Peng TH, Lv YC (September 2016). "Sortilin: A novel regulator in lipid metabolism and atherogenesis". Clinica Chimica Acta; International Journal of Clinical Chemistry. 460: 11–17. doi:10.1016/j.cca.2016.06.013. PMID   27312323.
  31. Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM, Madsen P, et al. (September 2010). "Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export". Cell Metabolism. 12 (3): 213–223. doi: 10.1016/j.cmet.2010.08.006 . PMID   20816088.
  32. 1 2 Carlo AS (2013-10-01). "Sortilin, a novel APOE receptor implicated in Alzheimer disease". Prion. 7 (5): 378–382. doi:10.4161/pri.26746. PMC   4134342 . PMID   24121631.
  33. Jin C, Liu X, Zhang F, Wu Y, Yuan J, Zhu J, et al. (2013-01-01). "An updated meta-analysis of the association between SORL1 variants and the risk for sporadic Alzheimer's disease". Journal of Alzheimer's Disease. 37 (2): 429–437. doi:10.3233/JAD-130533. PMID   23948893.
  34. Piscopo P, Tosto G, Belli C, Talarico G, Galimberti D, Gasparini M, et al. (2015-01-01). "SORL1 Gene is Associated with the Conversion from Mild Cognitive Impairment to Alzheimer's Disease". Journal of Alzheimer's Disease. 46 (3): 771–776. doi:10.3233/JAD-141551. PMID   25881907.
  35. Andersson CH, Hansson O, Minthon L, Andreasen N, Blennow K, Zetterberg H, et al. (July 2016). "A Genetic Variant of the Sortilin 1 Gene is Associated with Reduced Risk of Alzheimer's Disease". Journal of Alzheimer's Disease. 53 (4): 1353–1363. doi:10.3233/JAD-160319. PMC   5147507 . PMID   27392867.
  36. 1 2 Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. (August 2007). "Genomewide association analysis of coronary artery disease". The New England Journal of Medicine. 357 (5): 443–453. doi:10.1056/NEJMoa072366. PMC   2719290 . PMID   17634449.
  37. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. (October 2015). "A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease". Nature Genetics. 47 (10): 1121–1130. doi:10.1038/ng.3396. PMC   4589895 . PMID   26343387.
  38. Zeller T, Blankenberg S, Diemert P (January 2012). "Genomewide association studies in cardiovascular disease--an update 2011". Clinical Chemistry. 58 (1): 92–103. doi: 10.1373/clinchem.2011.170431 . PMID   22125304.
  39. 1 2 Ogawa K, Ueno T, Iwasaki T, Kujiraoka T, Ishihara M, Kunimoto S, et al. (June 2016). "Soluble sortilin is released by activated platelets and its circulating levels are associated with cardiovascular risk factors". Atherosclerosis. 249: 110–115. doi:10.1016/j.atherosclerosis.2016.03.041. PMID   27085161.
  40. 1 2 Jacobsen L, Madsen P, Nielsen MS, Geraerts WP, Gliemann J, Smit AB, Petersen CM (January 2002). "The sorLA cytoplasmic domain interacts with GGA1 and -2 and defines minimum requirements for GGA binding". FEBS Letters. 511 (1–3): 155–158. doi: 10.1016/S0014-5793(01)03299-9 . PMID   11821067. S2CID   21977507.

Further reading