GIT1

Last updated
GIT1
Identifiers
Aliases GIT1 , GIT ArfGAP 1, p95-APP1
External IDs OMIM: 608434 MGI: 1927140 HomoloGene: 32204 GeneCards: GIT1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001085454
NM_014030

NM_001004144
NM_001374758

RefSeq (protein)

NP_001078923
NP_054749

NP_001004144
NP_001361687

Location (UCSC) Chr 17: 29.57 – 29.59 Mb Chr 11: 77.38 – 77.4 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ARF GTPase-activating protein GIT1 is an enzyme that in humans is encoded by the GIT1 gene. [5] [6] [7]

Contents

GIT1 contains an ARFGAP domain, Anykrin repeats, and a GRK-interacting domain. The Arf-GAP domain, which enables it to act as a GTPase activating protein (GAP) for the Arf family of GTPases, has been shown to be involved in phosphorylation and inhibition of the ADRB2. If synaptic localization of GIT1 is disturbed, then this is known to affect dendritic spine morphology and formation---this is thought to occur through the Rac1/PAK1/LIMK/CFL1 pathway. [8]

Interactions

GIT1 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">G protein-coupled receptor kinase</span>

G protein-coupled receptor kinases are a family of protein kinases within the AGC group of kinases. Like all AGC kinases, GRKs use ATP to add phosphate to Serine and Threonine residues in specific locations of target proteins. In particular, GRKs phosphorylate intracellular domains of G protein-coupled receptors (GPCRs). GRKs function in tandem with arrestin proteins to regulate the sensitivity of GPCRs for stimulating downstream heterotrimeric G protein and G protein-independent signaling pathways.

<span class="mw-page-title-main">G protein-coupled receptor kinase 2</span> Enzyme

G-protein-coupled receptor kinase 2 (GRK2) is an enzyme that in humans is encoded by the ADRBK1 gene. GRK2 was initially called Beta-adrenergic receptor kinase, and is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases that is most highly similar to GRK3(βARK2).

<span class="mw-page-title-main">Sodium-hydrogen antiporter 3 regulator 1</span>

Sodium-hydrogen antiporter 3 regulator 1 is a regulator of Sodium-hydrogen antiporter 3. It is encoded by the gene SLC9A3R1. It is also known as ERM Binding Protein 50 (EBP50) or Na+/H+ Exchanger Regulatory Factor (NHERF1). It is believed to interact via long-range allostery, involving significant protein dynamics.

<span class="mw-page-title-main">PTK2B</span> Protein-coding gene in the species Homo sapiens

Protein tyrosine kinase 2 beta is an enzyme that in humans is encoded by the PTK2B gene.

<span class="mw-page-title-main">MAP3K11</span>

Mitogen-activated protein kinase kinase kinase 11 is an enzyme that in humans is encoded by the MAP3K11 gene.

<span class="mw-page-title-main">Alpha-1B adrenergic receptor</span>

The alpha-1B adrenergic receptor1B-adrenoreceptor), also known as ADRA1B, is an alpha-1 adrenergic receptor, and also denotes the human gene encoding it. The crystal structure of the α1B-adrenergic receptor has been determined in complex with the inverse agonist (+)-cyclazosin.

<span class="mw-page-title-main">MAP3K14</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 14 also known as NF-kappa-B-inducing kinase (NIK) is an enzyme that in humans is encoded by the MAP3K14 gene.

<span class="mw-page-title-main">ARHGEF7</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 7 is a protein that in humans is encoded by the ARHGEF7 gene.

<span class="mw-page-title-main">GIPC1</span> Protein-coding gene in the species Homo sapiens

GIPC PDZ domain containing family, member 1 (GIPC1) is a protein that in humans is encoded by the GIPC1 gene. GIPC was originally identified as it binds specifically to the C terminus of RGS-GAIP, a protein involved in the regulation of G protein signaling. GIPC is an acronym for "GAIP Interacting Protein C-terminus". RGS proteins are "Regulators of G protein Signaling" and RGS-GAIP is a "GTPase Activator protein for Gαi/Gαq", which are two major subtypes of Gα proteins. The human GIPC1 molecule is 333 amino acids or about 36 kDa in molecular size and consists of a central PDZ domain, a compact protein module which mediates specific protein-protein interactions. The RGS-GAIP protein interacts with this domain and many other proteins interact here or at other parts of the GIPC1 molecule. As a result, GIPC1 was independently discovered by several other groups and has a variety of alternate names, including synectin, C19orf3, RGS19IP1 and others. The GIPC1 gene family in mammals consisting of three members, so the first discovered, originally named GIPC, is now generally called GIPC1, with the other two being named GIPC2 and GIPC3. The three human proteins are about 60% identical in protein sequence. GIPC1 has been shown to interact with a variety of other receptor and cytoskeletal proteins including the GLUT1 receptor, ACTN1, KIF1B, MYO6, PLEKHG5, SDC4/syndecan-4, SEMA4C/semaphorin-4 and HTLV-I Tax. The general function of GIPC family proteins therefore appears to be mediating specific interactions between proteins involved in G protein signaling and membrane translocation.

<span class="mw-page-title-main">GRK6</span>

This gene encodes a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinase family, and is most highly similar to GRK4 and GRK5. The protein phosphorylates the activated forms of G protein-coupled receptors to regulate their signaling.

<span class="mw-page-title-main">NCOA6</span>

Nuclear receptor coactivator 6 is a protein that in humans is encoded by the NCOA6 gene.

<span class="mw-page-title-main">BMX (gene)</span> Type of enzyme

Cytoplasmic tyrosine-protein kinase BMX is an enzyme that in humans is encoded by the BMX gene.

<span class="mw-page-title-main">CYTH2</span> Protein-coding gene in the species Homo sapiens

Cytohesin-2 is a protein that in humans is encoded by the CYTH2 gene.

<span class="mw-page-title-main">GRK5</span>

G protein-coupled receptor kinase 5 is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases, and is most highly similar to GRK4 and GRK6. The protein phosphorylates the activated forms of G protein-coupled receptors to regulate their signaling.

<span class="mw-page-title-main">GIT2</span>

ARF GTPase-activating protein GIT2 is an enzyme that in humans is encoded by the GIT2 gene.

<span class="mw-page-title-main">RGS1</span> Protein-coding gene in the species Homo sapiens

Regulator of G-protein signaling 1 is a protein that in humans is encoded by the RGS1 gene.

<span class="mw-page-title-main">Liprin-alpha-1</span>

Liprin-alpha-1 is a protein that in humans is encoded by the PPFIA1 gene.

<span class="mw-page-title-main">GRIP2</span>

Glutamate receptor-interacting protein 2 is a protein that in humans is encoded by the GRIP2 gene.

<span class="mw-page-title-main">RICS (gene)</span> Protein-coding gene in the species Homo sapiens

Rho GTPase-activating protein 32 is a protein that in humans is encoded by the RICS gene. RICS has two known isoforms, RICS that are expressed primarily at neurite growth cones, and at the post synaptic membranes, and PX-RICS which is more widely expressed in the endoplasmic reticulum, Golgi apparatus and endosomes. The only known domain of the RICS is the RhoGAP domain, whilst PX-RICS has an additional Phox homology and SH3 domain.

<span class="mw-page-title-main">PPFIA4</span> Protein-coding gene in the species Homo sapiens

Liprin-alpha-4 is a protein that in humans is encoded by the PPFIA4 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000108262 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000011877 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Premont RT, Claing A, Vitale N, Freeman JL, Pitcher JA, Patton WA, Moss J, Vaughan M, Lefkowitz RJ (December 1998). "beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein". Proc Natl Acad Sci U S A. 95 (24): 14082–14087. Bibcode:1998PNAS...9514082P. doi: 10.1073/pnas.95.24.14082 . PMC   24330 . PMID   9826657.
  6. 1 2 Premont RT, Claing A, Vitale N, Perry SJ, Lefkowitz RJ (August 2000). "The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing". J Biol Chem. 275 (29): 22373–22380. doi: 10.1074/jbc.275.29.22373 . PMID   10896954.
  7. "Entrez Gene: GIT1 G protein-coupled receptor kinase interactor 1".
  8. Zhang H, Webb DJ, Asmussen H, Horwitz AF (2003). "Synapse formation is regulated by the signaling adaptor GIT1". J. Cell Biol. 161 (1): 131–142. doi:10.1083/jcb.200211002. PMC   2172873 . PMID   12695502.
  9. 1 2 3 4 Kim S, Ko J, Shin H, Lee JR, Lim C, Han JH, Altrock WD, Garner CC, Gundelfinger ED, Premont RT, Kaang BK, Kim E (February 2003). "The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo". J. Biol. Chem. 278 (8): 6291–300. doi: 10.1074/jbc.M212287200 . PMID   12473661.
  10. Bagrodia S, Bailey D, Lenard Z, Hart M, Guan JL, Premont RT, Taylor SJ, Cerione RA (August 1999). "A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins". J. Biol. Chem. 274 (32): 22393–400. doi: 10.1074/jbc.274.32.22393 . PMID   10428811.
  11. Haendeler J, Yin G, Hojo Y, Saito Y, Melaragno M, Yan C, Sharma VK, Heller M, Aebersold R, Berk BC (December 2003). "GIT1 mediates Src-dependent activation of phospholipase Cgamma by angiotensin II and epidermal growth factor". J. Biol. Chem. 278 (50): 49936–44. doi: 10.1074/jbc.M307317200 . PMID   14523024.
  12. 1 2 3 Ko J, Kim S, Valtschanoff JG, Shin H, Lee JR, Sheng M, Premont RT, Weinberg RJ, Kim E (March 2003). "Interaction between liprin-alpha and GIT1 is required for AMPA receptor targeting". J. Neurosci. 23 (5): 1667–77. doi:10.1523/JNEUROSCI.23-05-01667.2003. PMC   6741975 . PMID   12629171.
  13. 1 2 Ko J, Na M, Kim S, Lee JR, Kim E (October 2003). "Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins". J. Biol. Chem. 278 (43): 42377–85. doi: 10.1074/jbc.M307561200 . PMID   12923177.
  14. Zhao ZS, Manser E, Loo TH, Lim L (September 2000). "Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly". Mol. Cell. Biol. 20 (17): 6354–63. doi:10.1128/mcb.20.17.6354-6363.2000. PMC   86110 . PMID   10938112.

Further reading