ARHGEF7

Last updated
ARHGEF7
Protein ARHGEF7 PDB 1by1.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ARHGEF7 , BETA-PIX, COOL-1, COOL1, Nbla10314, P50, P50BP, P85, P85COOL1, P85SPR, PAK3, PIXB, Rho guanine nucleotide exchange factor 7
External IDs OMIM: 605477 MGI: 1860493 HomoloGene: 2895 GeneCards: ARHGEF7
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC) Chr 13: 111.11 – 111.31 Mb Chr 8: 11.73 – 11.84 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Rho guanine nucleotide exchange factor 7 is a protein that in humans is encoded by the ARHGEF7 gene. [5] [6] [7] [8]

ARHGEF7 is commonly known as the p21-activated protein kinase exchange factor beta (beta-PIX or βPIX), because it was identified by binding to p21-activated kinase (PAK) and also contains a guanine nucleotide exchange factor domain. [6]

Domains and functions

βPIX is a multidomain protein that functions both as a signaling scaffold protein and as an enzyme. [9] βPIX shares this domain structure and signaling function with the highly similar ARHGEF6/αPIX protein.

βPIX undergoes extensive alternative splicing to generate multiple variant proteins containing or lacking particular protein domains. [9] Adult forms all lack the amino terminal CH domain, and the two major adult variants have alternate carboxyl terminal region (termed β1 and β2): β1 forms contain the coiled-coil trimerization domain and the PDZ-target motif for binding to PDZ proteins (see below), while β2 forms lack both domains and their corresponding functions. [9]

βPIX contains a central DH/PH RhoGEF domain that functions as a guanine nucleotide exchange factor (GEF) for small GTPases of the Rho family, and specifically Rac and Cdc42. [6] Like other GEFs, βPIX can promote both release of GDP from an inactive small GTP-binding protein and binding of GTP to promote its activation. Signaling scaffolds bind to specific partners to promote efficient signal transduction by arranging sequential elements of a pathway near each other to facilitate interaction/information transfer, and also by holding these partner protein complexes in specific locations within the cell to promote local or regional signaling. In the case of βPIX, its SH3 domain binds to partner proteins with appropriate polyproline motifs, and particularly to group I p21-activated kinases (PAKs) (PAK1, PAK2 and PAK3). [6] PAK is bound to the βPIX SH3 domain in the inactive state, and activated Rac1 or Cdc42 binding to this PAK stimulates its protein kinase activity leading to downstream target protein phosphorylation; since βPIX can activate the “p21’’ small GTPases Rac1 or Cdc42 through its GEF activity, this βPIX/PAK/Rac complex exemplifies a scaffolding function.

Structurally, βPIX assembles as a trimer through a carboxyl-terminal coiled-coil domain that is present in the major carboxyl terminal splice variant β1, and further interacts with dimers of GIT1 or GIT2 through a nearby GIT-binding domain to form oligomeric GIT-PIX complexes. [9] Through this GIT-PIX complex, the scaffolding function of βPIX is amplified by also being able to hold GIT partners in proximity to βPIX partners. In contrast, β2 carboxyl terminal variants lack this coiled-coil region and are predicted to be unable to trimerize. The major carboxyl terminal variant β1 also has a PDZ domain binding target motif that binds to the PDZ domains in SHANK1, [10] scribble, [11] and SNX27 [12] proteins. Some splice variants of βPIX contain an amino-terminal Calponin Homology (CH) domain whose functions remain relatively poorly defined, but may interacts with parvin/affixin family proteins. [13] [9] βPIX variants with this extended amino terminal CH domain are most highly expressed early in development, but appear rare after birth. [9]

Interactions

βPIX has been reported to interact with over 120 proteins. [9] [14]

Major interacting proteins include:

See also

Related Research Articles

<span class="mw-page-title-main">Guanine nucleotide exchange factor</span> Proteins which remove GDP from GTPases

Guanine nucleotide exchange factors (GEFs) are proteins or protein domains that activate monomeric GTPases by stimulating the release of guanosine diphosphate (GDP) to allow binding of guanosine triphosphate (GTP). A variety of unrelated structural domains have been shown to exhibit guanine nucleotide exchange activity. Some GEFs can activate multiple GTPases while others are specific to a single GTPase.

<span class="mw-page-title-main">Transforming protein RhoA</span> Protein and coding gene in humans

Transforming protein RhoA, also known as Ras homolog family member A (RhoA), is a small GTPase protein in the Rho family of GTPases that in humans is encoded by the RHOA gene. While the effects of RhoA activity are not all well known, it is primarily associated with cytoskeleton regulation, mostly actin stress fibers formation and actomyosin contractility. It acts upon several effectors. Among them, ROCK1 and DIAPH1 are the best described. RhoA, and the other Rho GTPases, are part of a larger family of related proteins known as the Ras superfamily, a family of proteins involved in the regulation and timing of cell division. RhoA is one of the oldest Rho GTPases, with homologues present in the genomes since 1.5 billion years. As a consequence, RhoA is somehow involved in many cellular processes which emerged throughout evolution. RhoA specifically is regarded as a prominent regulatory factor in other functions such as the regulation of cytoskeletal dynamics, transcription, cell cycle progression and cell transformation.

<span class="mw-page-title-main">T-cell lymphoma invasion and metastasis-inducing protein 1</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor TIAM1 is a protein that in humans is encoded by the TIAM1 gene.

<span class="mw-page-title-main">RhoGEF domain</span>

RhoGEF domain describes two distinct structural domains with guanine nucleotide exchange factor (GEF) activity to regulate small GTPases in the Rho family. Rho small GTPases are inactive when bound to GDP but active when bound to GTP; RhoGEF domains in proteins are able to promote GDP release and GTP binding to activate specific Rho family members, including RhoA, Rac1 and Cdc42.

<span class="mw-page-title-main">AKAP13</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 13 is a protein that in humans, is encoded by the AKAP13 gene. This protein is also called AKAP-Lbc because it encodes the lymphocyte blast crisis (Lbc) oncogene, and ARHGEF13/RhoGEF13 because it contains a guanine nucleotide exchange factor (GEF) domain for the RhoA small GTP-binding protein.

<span class="mw-page-title-main">ARHGEF6</span> Protein-coding gene in humans

Rho guanine nucleotide exchange factor 6 is a protein that, in humans, is encoded by the ARHGEF6 gene.

<span class="mw-page-title-main">Dedicator of cytokinesis protein 1</span> Protein-coding gene in the species Homo sapiens

Dedicator of cytokinesis protein 1 also known as DOCK180, is a large protein encoded in the human by the DOCK1 gene, involved in intracellular signalling networks. It is the mammalian ortholog of the C. elegans protein CED-5 and belongs to the DOCK family of Guanine nucleotide exchange factors (GEFs).

<span class="mw-page-title-main">GIT1</span> Mammalian protein found in Homo sapiens

ARF GTPase-activating protein GIT1 is an enzyme that in humans is encoded by the GIT1 gene.

<span class="mw-page-title-main">CYTH2</span> Protein-coding gene in the species Homo sapiens

Cytohesin-2 is a protein that in humans is encoded by the CYTH2 gene.

<span class="mw-page-title-main">CYTH1</span> Protein-coding gene in the species Homo sapiens

Cytohesin-1 formerly known as Pleckstrin homology, Sec7 and coiled/coil domains 1 (PSCD1) is a protein that in humans is encoded by the CYTH1 gene.

<span class="mw-page-title-main">PLXNB1</span> Protein-coding gene in the species Homo sapiens

Plexin B1 is a protein of the plexin family that in humans is encoded by the PLXNB1 gene.

<span class="mw-page-title-main">ARHGEF1</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 1 is a protein that in humans is encoded by the ARHGEF1 gene. This protein is also called RhoGEF1 or p115-RhoGEF.

<span class="mw-page-title-main">ARHGEF2</span> Mammalian protein found in Homo sapiens

Rho guanine nucleotide exchange factor 2 is a protein that in humans is encoded by the ARHGEF2 gene.

<span class="mw-page-title-main">ARHGEF11</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 11 is a protein that in humans is encoded by the ARHGEF11 gene. This protein is also called RhoGEF11 or PDZ-RhoGEF.

<span class="mw-page-title-main">ARHGEF12</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 12 is a protein that in humans is encoded by the ARHGEF12 gene. This protein is also called RhoGEF12 or Leukemia-associated Rho guanine nucleotide exchange factor (LARG).

<span class="mw-page-title-main">TRIO (gene)</span> Protein-coding gene in the species Homo sapiens

Triple functional domain protein is a protein that in humans is encoded by the TRIO gene.

<span class="mw-page-title-main">RAPGEF2</span> Protein-coding gene in the species Homo sapiens

Rap guanine nucleotide exchange factor 2 is a protein that in humans is encoded by the RAPGEF2 gene.

<span class="mw-page-title-main">GNA13</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein subunit alpha-13 is a protein that in humans is encoded by the GNA13 gene.

<span class="mw-page-title-main">GNA12</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein subunit alpha-12 is a protein that in humans is encoded by the GNA12 gene.

Eukaryotic Initiation Factor 2 (eIF2) is an eukaryotic initiation factor. It is required for most forms of eukaryotic translation initiation. eIF2 mediates the binding of tRNAiMet to the ribosome in a GTP-dependent manner. eIF2 is a heterotrimer consisting of an alpha, a beta, and a gamma subunit.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000102606 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031511 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Oh WK, Yoo JC, Jo D, Song YH, Kim MG, Park D (July 1997). "Cloning of a SH3 domain-containing proline-rich protein, p85SPR, and its localization in focal adhesion". Biochemical and Biophysical Research Communications. 235 (3): 794–798. doi:10.1006/bbrc.1997.6875. PMID   9207241.
  6. 1 2 3 4 Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L, Tan I, Leung T, Lim L (July 1998). "PAK kinases are directly coupled to the PIX family of nucleotide exchange factors". Molecular Cell. 1 (2): 183–192. doi: 10.1016/S1097-2765(00)80019-2 . PMID   9659915.
  7. Bagrodia S, Taylor SJ, Jordon KA, Van Aelst L, Cerione RA (October 1998). "A novel regulator of p21-activated kinases". Journal of Biological Chemistry. 273 (37): 23633–23636. doi: 10.1074/jbc.273.37.23633 . PMID   9726964.
  8. "Entrez Gene: ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7".
  9. 1 2 3 4 5 6 7 Zhou W, Li X, Premont RT (May 2016). "Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes". Journal of Cell Science. 129 (10): 1963–1974. doi:10.1242/jcs.179465. PMC   6518221 . PMID   27182061.
  10. Park E, Na M, Choi J, Kim S, Lee JR, Yoon J, Park D, Sheng M, Kim E (2003). "The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc42". J. Biol. Chem. 278 (21): 19220–9. doi: 10.1074/jbc.M301052200 . PMID   12626503.
  11. Audebert S, Navarro C, Nourry C, Chasserot-Golaz S, Lecine P, Bellaiche Y, Dupont JL, Premont RT, Sempere C, Strub JM, Van Dorsselaer A, Vitale N, Borg JP (June 2004). "Mammalian Scribble forms a tight complex with the betaPIX exchange factor". Current Biology. 14 (11): 987–995. doi: 10.1016/j.cub.2004.05.051 . PMID   15182672.
  12. Valdes JL, Tang J, McDermott MI, Kuo JC, Zimmerman SP, Wincovitch SM, Waterman CM, Milgram SL, Playford MP (November 2011). "Sorting nexin 27 protein regulates trafficking of a p21-activated kinase (PAK) interacting exchange factor (β-Pix)-G protein-coupled receptor kinase interacting protein (GIT) complex via a PDZ domain interaction". Journal of Biological Chemistry. 286 (45): 39403–39416. doi: 10.1074/jbc.M111.260802 . PMC   3234764 . PMID   21926430.
  13. Rosenberger G, Jantke I, Gal A, Kutsche K (2003). "Interaction of alphaPIX (ARHGEF6) with beta-parvin (PARVB) suggests an involvement of alphaPIX in integrin-mediated signaling". Human Molecular Genetics. 12 (2): 155–167. doi: 10.1093/hmg/ddg019 . PMID   12499396.
  14. "ARHGEF7 Result Summary".

Further reading