SHANK1

Last updated
SHANK1
Protein SHANK1 PDB 1q3o.png
Identifiers
Aliases SHANK1 , SPANK-1, SSTRIP, synamon, SH3 and multiple ankyrin repeat domains 1
External IDs OMIM: 604999 MGI: 3613677 HomoloGene: 22949 GeneCards: SHANK1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_016148

NM_001034115

RefSeq (protein)

NP_057232

NP_001029287

Location (UCSC) Chr 19: 50.66 – 50.72 Mb Chr 7: 43.96 – 44.01 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

SH3 and multiple ankyrin repeat domains protein 1 is a protein that in humans is encoded by the SHANK1 gene. [5] [6]

Contents

Interactions

SHANK1 has been shown to interact with:

Clinical Significance

SHANK1 is a scaffold protein that plays a critical role in the formation and maintenance of excitatory synapses in the brain. Mutations in the SHANK1 gene have been implicated in a number of neurodevelopmental disorders, including autism spectrum disorder (ASD), schizophrenia, and intellectual disability. In particular, the loss of SHANK1 expression has been linked to ASD, and SHANK1 mutations have been identified in individuals with ASD or other neurodevelopmental disorders. ASD, also known as "autism spectrum disorders", is identified as a group of conditions which cause characteristics in the human brain that lead to impairments. These impairments are such as communication, interest, and socialization issues or patterns of behavioral divergence.

Sato et al 2012 established the significant influence of the mutations and deletions of SHANK1 in males with ASD. [11] This study consisted of 1,158 Canadian individuals and 456 European individuals who all had ASD. SHANK 1 is located is chromosome 19 in humans, while SHANK2 is located on chromosome 11, and SHANK3 on chromosome 22. The locus of SHANK1, in particular, is less studied in relation to ASD than SHANK2 and SHANK3. The objective of the study was to provide more context and analyze the specific protein, SHANK1, as a focal point for male ASD development caused by deletion, microdeletion, and/or mutation. Researchers found that a de novo deletion of the gene was males with high functioning ASD whereas 15,000 males used as a control group, did not have the deletion.

One particular focus of the study took 7 individuals which appeared to have deletions in chromosome 19 involving SHANK1. Of these 7, 4 were males who have high functioning ASD, which also happen to come from multigenerational detection of the inherited mutation and/ or deletion of SHANK1 gene. In that same group, 2 female individuals have SHANK1 deletion, however they did not present with ASD. The last individual of the group was a male who had an unrelated (not inherited) deletion of the SHANK1 gene while presenting ASD. Every individual in this study that presented with ASD was evaluated and diagnosed by an expert clinician using the Autism Diagnostic Observation Schedule (ADOS) and/or the Autism Diagnostic Interview-Revised (ADI-R). Individuals were selected from various hospitals and special clinical centers Throughout Canada and Europe.

A laboratory test was run in order to identify the gene in the individuals using SYBR-Green-based real-time quantitative PCR (qPCR). The test was focused on family 1, the genetic locus in which the SHANK family is found. This allowed for primers to be used in order to establish the presence of any mutations, deletion, or microdeletions of SHANK1. Results indicated that deletion is 63.8 kb, and causes an elimination in exons 1-20 of the SHANK1 gene, as well as deletion in the gene CLEC11A. The CLEC11A gene (MIM 604713) is located on chromosome 2q14.1 and encodes a protein called osteoactivin. Osteoactivin is present in a variety of tissues, including bone, cartilage, and lung. The gene has been found to be a part of several biological processes, including bone remodeling, angiogenesis, and immune response. Mutations in the CLEC11A gene are associated with an increased risk of developing osteoporosis and other bone-related disorders.

In addition to SHANK1 being found to have developing ASD in males with the genetic deletion, the inheritance of the gene was also encountered from the chromosome of the studied individual which originated from the mother. It appeared that the mothers in these cases, carried two copies of the SHANK1 gene. This was not however, the case for presence of ASD in males with mutations of the gene, only deletion.

Researchers found that an unrelated ASD-affected male carrying an independent de novo deletion of SHANK1, supports the interpretation that the SHANK1 CNV segregating in family 1 is in fact the primary etiologic event which leads to the individual presenting ASD. In order to further support this claim, researchers also stated that continuous testing on case reports of multigenerational families would be required. The evidence supports that the mutation, deletion, or microdeletion of the SHANK1 gene is just as influential as SHANK2 and SHANK3 in causing male individuals to present with ASD.

The significance of the findings of the gene mutation extend beyond medical. They also provide understanding as to why there is a diagnosis bias for males versus females with ASD. It also allows for genetic interpretations of the differences in inherited forms of ASD and unrelated genetic mutations. This can have effects on the social aspect of an individual with ASD. Having tested and trusted evidence as to the origin of ASD is crucial as more and more people are diagnosed and the field of resources for these individuals continues to grow.

Related Research Articles

<span class="mw-page-title-main">DLG4</span> Mammalian protein found in Homo sapiens

PSD-95 also known as SAP-90 is a protein that in humans is encoded by the DLG4 gene.

<span class="mw-page-title-main">Ephrin B1</span> Protein-coding gene in the species Homo sapiens

Ephrin B1 is a protein that in humans is encoded by the EFNB1 gene. It is a member of the ephrin family. The encoded protein is a type I membrane protein and a ligand of Eph-related receptor tyrosine kinases. It may play a role in cell adhesion and function in the development or maintenance of the nervous system.

<span class="mw-page-title-main">DNM2</span> Protein-coding gene in the species Homo sapiens

Dynamin-2 is a protein that in humans is encoded by the DNM2 gene.

<span class="mw-page-title-main">DLG3</span> Protein-coding gene in humans

Disks large homolog 3 (DLG3) also known as neuroendocrine-DLG or synapse-associated protein 102 (SAP-102) is a protein that in humans is encoded by the DLG3 gene. DLG3 is a member of the membrane-associated guanylate kinase (MAGUK) superfamily of proteins.

<span class="mw-page-title-main">DLG2</span> Protein-coding gene in the species Homo sapiens

Disks large homolog 2 (DLG2) also known as channel-associated protein of synapse-110 (chapsyn-110) or postsynaptic density protein 93 (PSD-93) is a protein that in humans is encoded by the DLG2 gene.

<span class="mw-page-title-main">Brain-specific angiogenesis inhibitor 2</span> Protein-coding gene in the species Homo sapiens

Brain-specific angiogenesis inhibitor 2 is a protein that in humans is encoded by the BAI2 gene. It is a member of the adhesion-GPCR family of receptors.

<span class="mw-page-title-main">SPTAN1</span> Protein-coding gene in the species Homo sapiens

Alpha II-spectrin, also known as Spectrin alpha chain, brain is a protein that in humans is encoded by the SPTAN1 gene. Alpha II-spectrin is expressed in a variety of tissues, and is highly expressed in cardiac muscle at Z-disc structures, costameres and at the sarcolemma membrane. Mutations in alpha II-spectrin have been associated with early infantile epileptic encephalopathy-5, and alpha II-spectrin may be a valuable biomarker for Guillain–Barré syndrome and infantile congenital heart disease.

<span class="mw-page-title-main">ARHGEF7</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 7 is a protein that in humans is encoded by the ARHGEF7 gene.

<span class="mw-page-title-main">BAIAP2</span> Protein-coding gene in the species Homo sapiens

Brain-specific angiogenesis inhibitor 1-associated protein 2 is a protein that in humans is encoded by the BAIAP2 gene.

<span class="mw-page-title-main">GIT1</span> Mammalian protein found in Homo sapiens

ARF GTPase-activating protein GIT1 is an enzyme that in humans is encoded by the GIT1 gene.

<span class="mw-page-title-main">AKAP9</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 9 is a protein that in humans is encoded by the AKAP9 gene. AKAP9 is also known as Centrosome- and Golgi-localized protein kinase N-associated protein (CG-NAP) or AKAP350 or AKAP450

<span class="mw-page-title-main">SHANK2</span> Protein-coding gene in the species Homo sapiens

SH3 and multiple ankyrin repeat domains protein 2 is a protein that in humans is encoded by the SHANK2 gene. Two alternative splice variants, encoding distinct isoforms, are reported. Additional splice variants exist but their full-length nature has not been determined.

<span class="mw-page-title-main">NDN (gene)</span> Protein-coding gene in the species Homo sapiens

Necdin is a protein that in humans is encoded by the NDN gene.

<span class="mw-page-title-main">DLGAP1</span> Protein-coding gene in the species Homo sapiens

Disks large-associated protein 1 (DAP-1), also known as guanylate kinase-associated protein (GKAP), is a protein that in humans is encoded by the DLGAP1 gene. DAP-1 is known to be highly enriched in synaptosomal preparations of the brain, and present in the post-synaptic density.

<span class="mw-page-title-main">Triadin</span> Protein-coding gene in humans

Triadin, also known as TRDN, is a human gene associated with the release of calcium ions from the sarcoplasmic reticulum triggering muscular contraction through calcium-induced calcium release. Triadin is a multiprotein family, arising from different processing of the TRDN gene on chromosome 6. It is a transmembrane protein on the sarcoplasmic reticulum due to a well defined hydrophobic section and it forms a quaternary complex with the cardiac ryanodine receptor (RYR2), calsequestrin (CASQ2) and junctin proteins. The luminal (inner compartment of the sarcoplasmic reticulum) section of Triadin has areas of highly charged amino acid residues that act as luminal Ca2+ receptors. Triadin is also able to sense luminal Ca2+ concentrations by mediating interactions between RYR2 and CASQ2. Triadin has several different forms; Trisk 95 and Trisk 51, which are expressed in skeletal muscle, and Trisk 32 (CT1), which is mainly expressed in cardiac muscle.

<span class="mw-page-title-main">GRIP2</span> Protein-coding gene in the species Homo sapiens

Glutamate receptor-interacting protein 2 is a protein that in humans is encoded by the GRIP2 gene.

<span class="mw-page-title-main">CHRND</span> Protein-coding gene in the species Homo sapiens

Acetylcholine receptor subunit delta is a protein that in humans is encoded by the CHRND gene.

<span class="mw-page-title-main">SHANK3</span> Protein-coding gene in the species Homo sapiens

SH3 and multiple ankyrin repeat domains 3 (Shank3), also known as proline-rich synapse-associated protein 2 (ProSAP2), is a protein that in humans is encoded by the SHANK3 gene on chromosome 22. Additional isoforms have been described for this gene but they have not yet been experimentally verified.

<span class="mw-page-title-main">PPFIA4</span> Protein-coding gene in the species Homo sapiens

Liprin-alpha-4 is a protein that in humans is encoded by the PPFIA4 gene.

<span class="mw-page-title-main">Ankyrin-3</span> Protein-coding gene in the species Homo sapiens

Ankyrin-3 (ANK-3), also known as ankyrin-G, is a protein from ankyrin family that in humans is encoded by the ANK3 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000161681 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000038738 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Zitzer H, Hönck HH, Bächner D, Richter D, Kreienkamp HJ (January 2000). "Somatostatin receptor interacting protein defines a novel family of multidomain proteins present in human and rodent brain". J Biol Chem. 274 (46): 32997–3001. doi: 10.1074/jbc.274.46.32997 . PMID   10551867.
  6. "Entrez Gene: SHANK1 SH3 and multiple ankyrin repeat domains 1".
  7. Park E, Na M, Choi J, Kim S, Lee JR, Yoon J, Park D, Sheng M, Kim E (May 2003). "The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc42". J. Biol. Chem. 278 (21): 19220–9. doi: 10.1074/jbc.M301052200 . PMID   12626503.
  8. Soltau M, Richter D, Kreienkamp HJ (Dec 2002). "The insulin receptor substrate IRSp53 links postsynaptic shank1 to the small G-protein cdc42". Mol. Cell. Neurosci. 21 (4): 575–83. doi:10.1006/mcne.2002.1201. PMID   12504591. S2CID   572407.
  9. Okamoto PM, Gamby C, Wells D, Fallon J, Vallee RB (Dec 2001). "Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton". J. Biol. Chem. 276 (51): 48458–65. doi: 10.1074/jbc.M104927200 . PMC   2715172 . PMID   11583995.
  10. Böckers TM, Mameza MG, Kreutz MR, Bockmann J, Weise C, Buck F, Richter D, Gundelfinger ED, Kreienkamp HJ (October 2001). "Synaptic scaffolding proteins in rat brain. Ankyrin repeats of the multidomain Shank protein family interact with the cytoskeletal protein alpha-fodrin". J. Biol. Chem. 276 (43): 40104–12. doi: 10.1074/jbc.M102454200 . PMID   11509555.
  11. Sato, Daisuke; Lionel, Anath C.; Leblond, Claire S.; Prasad, Aparna; Pinto, Dalila; Walker, Susan; O'Connor, Irene; Russell, Carolyn; Drmic, Irene E.; Hamdan, Fadi F.; Michaud, Jacques L.; Endris, Volker; Roeth, Ralph; Delorme, Richard; Huguet, Guillaume; Leboyer, Marion; Rastam, Maria; Gillberg, Christopher; Lathrop, Mark; Stavropoulos, Dimitri J.; Anagnostou, Evdokia; Weksberg, Rosanna; Fombonne, Eric; Zwaigenbaum, Lonnie; Fernandez, Bridget A.; Roberts, Wendy; Rappold, Gudrun A.; Marshall, Christian R.; Bourgeron, Thomas; Szatmari, Peter; Scherer, Stephen W. (4 May 2012). "SHANK1 Deletions in Males with Autism Spectrum Disorder". American Journal of Human Genetics. 90 (5): 879–887. doi:10.1016/j.ajhg.2012.03.017. PMC   3376495 . PMID   22503632.

Further reading